首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater.  相似文献   

3.
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater.  相似文献   

4.
Biochars converted from agricultural residuals can effectively remove ammonium from water. This work further improved the sorption ability of biochars to aqueous ammonium through alkali modification. Three modified biochars were prepared from agricultural residuals pre-treated with NaOH solution through low-temperature (300 °C) slow pyrolysis. The modified biochars effectively removed ammonium ions from water under various conditions with relatively fast adsorption kinetics (reached equilibrium within 10 h) and extremely high adsorption capacity (>200 mg/g). The Langmuir maximum capacity of the three modified biochars were between 313.9 and 518.9 mg/g, higher than many other ammonium adsorbents. Although the sorption of ammonium onto the modified biochar was affected by pH and temperature, it was high under all of the tested conditions. Findings from this work indicated that alkali-modified biochars can be used as an alternative adsorbent for the removal of ammonium from wastewater.  相似文献   

5.
Biosorption of mercury from aqueous solution by Ulva lactuca biomass   总被引:4,自引:0,他引:4  
The mercury biosorption onto non-living protonated biomass of Ulva lactuca, as an alternative method for mercury removal from aqueous solutions, was investigated. Batch equilibrium tests showed that at pH 3.5, 5.5 and 7 the maxima of mercury uptake values, according to Langmuir adsorption isotherm, were 27.24, 84.74 and 149.25 mg/g, respectively. The ability of Ulva lactuca biomass to adsorb mercury in fixed-bed column, was investigated as well. The influence of column bed height, flow rate and effluent initial concentration of metal was studied. The adsorbed metal ions were easily desorbed from the algal biomass with 0.3 N H2SO4 solution. After acid desorption and regeneration with distilled water, the biomass could be reused for other biosorption assays with similar performances.  相似文献   

6.
基因工程菌大肠杆菌JM109富集废水中镍离子的研究   总被引:6,自引:2,他引:4  
利用通过基因工程技术所构建的在细胞内同时表达出高特异性镍转运蛋白和金属硫蛋白的基因工程菌富集水体中的镍离子。菌体细胞对Ni2+的富集速率很快,富集过程满足Langmuir等温线模型。与原始宿主菌相比,经基因改造的基因工程菌不仅最大镍富集容量增加了5倍多,而且对pH值、离子强度的变化及其它共存重金属离子的影响都呈现出更强的适应性。相比而言,Na+、Ca2+、Cd2+、Pb2+的影响较小,但Mg2+、Hg2+和Cu2+所引起的负面效应较大。进一步的实验表明基因工程菌对Ni2+的富集行为不需要外加营养物质。  相似文献   

7.
Biosorption of metals by microorganisms is a promising technology to remove accumulated non-process elements in highly recycled biorefinery process water. Removal of these elements would enable greater water reuse and reduce the environmental impact of effluent discharge. A model lignocellulosic ethanol biorefinery wastewater was created based on pulp mill effluent. This generated a wastewater with an environmentally realistic high loading of dissolved natural organic matter (900?mg/l), a potentially important factor influencing metal biosorption. Analysis of feedstock and pulp mill effluent indicated that Mn and Zn are likely to be problematic in highly recycled lignocellulosic ethanol biorefinery process water. Therefore, the growth of several bacteria and fungi from existing collections, and some isolated from pulp mill effluent were tested in the model wastewater spiked with Mn and Zn (0.2?mM). Wastewater isolates grew the best in the wastewater. Metal uptake varied by species and was much greater for Zn than Mn. A bacterium, Novosphingobium nitrogenifigens Y88(T), removed the most metal per unit biomass, 35 and 17?mg?Mn/g. No other organism tested decreased the Mn concentration. A yeast, Candida tropicalis, produced the most biomass and removed the most total metal (38?% of Zn), while uptake per unit biomass was 24?mg?Zn/g. These results indicate that microorganisms can remove significant amounts of metals in wastewater with high concentrations of dissolved natural organic matter. Metal sorption by autochthonous microorganisms in an anaerobic bioreactor may be able to extend water reuse and therefore lower the water consumption of future biorefineries.  相似文献   

8.
El-Morsy el-SM 《Mycologia》2004,96(6):1183-1189
Thirty-two fungal species were isolated from a polluted watercourse near the Talkha fertilizer plant, Mansoura Province, Egypt. Aspergillus niger, A. flavus, Cunninghamella echinulata and Trichoderma koningii were isolated frequently. On the basis of its frequency, Cunninghamella echinulata was chosen for biosorption studies. Free and immobilized biomass of C. echinulata sequestered ions in this decreasing sequence is: Pb >Cu >Zn. The effects of biomass concentration, pH and time of contact were investigated. The level of ion uptake rose with increasing biomass. The maximum uptake for lead (45 mg/g), copper (20 mg/g) and zinc (18.8 mg/g) occurred at 200 mg/L biomass. The uptake rose with increasing pH up to 4 in the case of Pb and 5 in the case of Cu and Zn. Maximum uptake for all metals was achieved after 15 min. Ion uptake followed the Langmuir adsorption model, permitting the calculation of maximum uptake and affinity coefficients. Treatment of C. echinulata biomass with NaOH improved biosorbent capacity, as did immobilization with alginate. Immobilized biomass could be regenerated readily by treatment with dilute HCl. The biomass-alginate complex efficiently removed Pb, Zn and Cu from polluted water samples. Therefore,Cunninghamella echinulata could be employed either in free or immobilized form as a biosorbent of metal ions in waste water.  相似文献   

9.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

10.
Yan  Guoan  Yu  Jingyi  Wang  Yuanxiang 《Biotechnology letters》1996,18(8):893-896
Summary When Chlorella vulgaris was immobilized in calcium alginate beads, it removed more than 90% phosphate (10mg P/L) added to artificial wastewater at pH 3 to 9 and from 10 to 30°C. Free cells, however, only removed 40–60% of added phosphate at low pH (3–5) and at 10°C. Immobilized C. vulgaris is shown to have great potentialities for removing phosphate from low pH wastewater and at low temperature.  相似文献   

11.
Macroalgae have received much attention for heavy metal removal in treatment of domestic wastewater. In this report, the uptake capacity of a common freshwater green alga, Cladophora fracta, for heavy metal ions (copper, zinc, cadmium, and mercury) was evaluated. The equilibrium adsorption capacities were 2.388?mg Cu2+, 1.623?mg Zn2+, 0.240?mg Cd2+, and 0.228?mg Hg2+ per gram of living algae at 18°C and pH?5.0. The removal efficiency for Cu2+, Zn2+, Cd2+, and Hg2+ were 99, 85, 97, and 98%, respectively. Greater removal efficiency was achieved when the concentrations of metal ions were at very low level. The results indicated that living algae are suitable for removal and recovery of heavy metal ions from aqueous solutions and can be a potential tool to treat industrial wastewater.  相似文献   

12.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

13.
The animal byproduct, hen eggshell membrane (ESM), was evaluated for its ability to sorb gold ions (dicyanoaurate(I) and tetrachloroaurate(III)) from solutions and electroplating wastewater. The gold uptake was dependent on pH, temperature and co-ions present in the solutions, with pH 3.0 being the optimum value. The equilibrium data followed the Langmuir isotherm model with maximum capacities of 147 mg Au(I)/g dry weight and 618 mg Au(III)/g, respectively. Desorption of sorbed gold(I) with 0.1 mol/l NaOH resulted in no changes of the biosorbent gold uptake capacity through five consecutive sorption/desorption cycles. In column experiments, selective recovery of gold from electroplating wastewater containing various metal ions was noted. The affinity of metal sorption was in the order Au > Ag > Co > Cu > Pb > Ni > Zn.  相似文献   

14.
A biosorbent prepared by alkaline extraction of Aspergillus niger biomass was evaluated for its potential to remove mercury species – inorganic (Hg2+) and methyl mercury (CH3Hg+) – from aqueous solutions. Batch experiments were carried out to determine the pH and time profile of sorption for both species in the pH range 2–7. The Hg2+ exhibited more rapid sorption and higher capacity than the CH3Hg+. Further, removal of both mercury species from spiked ground water samples was efficient and not influenced by other ions. Sorption studies with esterified biosorbent indicated loss of binding of both mercury species (>80%), which was regained when the ester groups were removed by alkaline hydrolysis, suggesting the involvement of carboxyl groups in binding. Further, no interconversion of sorbed species occurred on the biomass. The biosorbent was reusable up to six cycles without serious loss of binding capacity. Our results suggest that the biosorbent from Aspergillus niger can be used for removal of mercury and methyl mercury ions from polluted aqueous effluents.  相似文献   

15.
张秋云  邓培雁  卢平 《生态科学》2006,25(6):561-563
优化了水解酸化-接触氧化-混凝处理工艺中的停留时间、混凝剂种类和用量,并将优化后的工艺参数在某织带废水处理工程中进行了应用。结果表明,以硫酸亚铁作为絮凝剂,该织带厂废水经过20h处理后效果良好;其中,pH下降了2.9,CODcr及BOD5去处效率均达到90%以上,色度去除率达85%;可以确保该织带厂污水处理后达到《广东省水污染物排放限值》(DB44/26-2001)中的第二时段一级标准。该试验为解决广东省织带厂废水处理提供了一条可行途径,并对该类型高浓度染料废水的治理具有借鉴和参考价值。  相似文献   

16.
Activated carbon was prepared from coconut shells by chemical treatment, which was followed by thermal activation. It was mixed with 0.5 % of a sodium sulfide solution for different time intervals and the sulfide loading was observed maximum after one hour of equilibration. The carbons with and without sulfide treatment were used for uptake of mercuric ions from wastewater and the sulfide‐loaded carbon was found to be more effective. The equilibrium data for mercury adsorption obeyed a Freundlich‐type isotherm. Quantitative desorption of mercury was achieved using alkaline solutions of sodium sulfide.  相似文献   

17.
Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium and thorium in aqueous solutions. Biosorption isotherms have been used for the evaluation of biosorptive uptake capacity of the biomass which was also compared to an activated carbon and the ion exchange resin currently used in uranium production processes. Determined uranium and thorium biosorption isotherms were independent of the initial U or Th solution concentration. Solution pH affected the exhibited uptake. In general, lower biosorptive uptake was exhibited at pH 2 than at pH 4. No discernible difference in uptake was observed between pH 4 and pH 5 where the optimum pH for biosorption lies. The biomass of Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity (g) in excess of 180 mg/g. At an equilibrium uranium concentration of 30 mg/liter, R. arrhizus removed approximately 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon, respectively. Under the same conditions, R. arrhizus removed 20 times more thorium than the ion exchange resin and 2.3 times more than the activated carbon. R. arrhizus also exhibited higher uptake and a generally more favorable isotherm for both uranium and thorium than all other biomass types examined.  相似文献   

18.
Accumulation of mercury in estuarine food chains   总被引:3,自引:0,他引:3  
To understand the accumulation of inorganic mercury and methylmercury at the base of the estuarine food chain, phytoplankton (Thalassiosira weissflogii) uptake and mercury speciation experiments were conducted. Complexation of methylmercury as methylmercury-bisulfide decreased the phytoplankton uptake rate while the uptake rate of the methylmercury-cysteine and -thiourea complexes increased with increasing complexation by these ligands. Furthermore, our results indicated that while different ligands influenced inorganic mercury/methylmercury uptake by phytoplankton cells, the ligand complex had no major influence on either where the mercury was sequestered within the phytoplankton cell nor the assimilation efficiency of the mercury by copepods. The assimilation efficiency of inorganic mercury/methylmercury by copepods and amphipods feeding on algal cells was compared and both organisms assimilated methylmercury much more efficiently; the relative assimilation efficiency of methylmercury to inorganic mercury was 2.0 for copepods and 2.8 for amphipods. The relative assimilation is somewhat concentration dependent as experiments showed that as exposure concentration increased, a greater percentage of methylmercury was found in the cytoplasm of phytoplankton cells, resulting in a higher concentration in the copepods feeding on these cells. Additionally, food quality influenced assimilation by invertebrates. During decay of a T. weissflogii culture, which served as food for the invertebrates, copepods were increasingly less able to assimilate the methylmercury from the food, while even at advanced stages of decay, amphipods were able to assimilate mercury from their food to a high degree. Finally, fish feeding on copepods assimilated methylmercury more efficiently than inorganic mercury owing to the larger fraction of methylmercury found in the soft tissues of the copepods.  相似文献   

19.
An integrated system for the biotreatment of acidic wastewaters containing both toxic metals and organics is presented. It consists of two bioprocess stages (i) an anaerobic, SRB stage (containing alkaline‐tolerant s ulfate‐ r educing b acteria) that at pH 8 (chosen to acclimatize the bacteria in the biomedium) produces high concentrations of total sulfide ions (more than 400 mg/L) which are added to the wastewater to precipitate the heavy metals out at pH 2 as metal sulfides, and (ii) an aerobic, acidophilic stage containing heterotrophic bacteria (WJB3) that degrade organic xenobiotics. The anaerobic system was comprised of a 4‐L fluidized bed bioreactor with immobilized SRB, a mixing tank, and a precipitation tank. The effluent from the bioreactor with a high concentration of sulfide ions was fed into a mixing tank where model wastewaters containing toxic metals and phenol at pH 2 were also fed at increasing loading rates until free metal ions could be detected in the precipitation tank outlet. Then the effluent from the precipitation tank outlet was fed into a 2.5‐L aerobic bioreactor in which phenol was degraded. In this research, 100 % removal efficiencies were obtained with wastewaters containing more than 400 mg/L metal ions and 900 mg/L phenol at a 6‐h HRT of the mixing tank.  相似文献   

20.
This study assesses the ability of mycelia of Rhizopus delemar (both free and immobilized on polyurethane foam) to remove heavy metals from single-ion solutions as well as from a mixture of them. All experiments were conducted using 0.5-5 mm solutions of CuSO4 x 5H2O, CoCl2-6H2O and FeSO4 7H2O. Mycelia immobilized on polyurethane foam cells showed some times increase in uptake compared with that of free cells. Metal ions accumulation from a mixed solution was decreased slightly for cobalt and iron and considerable for copper ions. Heavy metal uptake was examined in the immobilized column experiments and more than 92% heavy metal removal (mg heavy metals removed/mg heavy metals added) from a mixed solution was achieved during the 5 cycles. During these experiments, the dry weight of the immobilized cells was decreased by only 2%. These results showed that immobilized mycelia of Rhizopus delemar can be used repeatedly for removal of heavy metals from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号