首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The completion of the human genome project, and other genome sequencing projects, has spearheaded the emergence of the field of bioinformatics. Using computer programs to analyse DNA and protein information has become an important area of life science research and development. While it is not necessary for most life science researchers to develop specialist bioinformatic skills (including software development), basic skills in the application of common bioinformatics software and the effective interpretation of results are increasingly required by all life science researchers. Training in bioinformatics is increasingly occurring within the university system as part of existing undergraduate science and specialist degrees. One difficulty in bioinformatics education is the sheer number of software programs required in order to provide a thorough grounding in the subject to the student. Teaching requires either a well-maintained internal server with all the required software, properly interfacing with student terminals, and with sufficient capacity to handle multiple simultaneous requests, or it requires the individual installation and maintenance of every piece of software on each computer. In both cases, there are difficult issues regarding site maintenance and accessibility. In this article, we discuss the use of BioManager, a web-based bioinformatics application integrating a variety of common bioinformatics tools, for teaching, including its role as the main bioinformatics training tool in some Australian and international universities. We discuss some of the issues with using a bioinformatics resource primarily created for research in an undergraduate teaching environment.  相似文献   

2.
We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational “culture.” The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.  相似文献   

3.
Bioinformatics     
Bioinformatics is an interdisciplinary field that blends computer science and biostatistics with biological and biomedical sciences such as biochemistry, cell biology, developmental biology, genetics, genomics, and physiology. An important goal of bioinformatics is to facilitate the management, analysis, and interpretation of data from biological experiments and observational studies. The goal of this review is to introduce some of the important concepts in bioinformatics that must be considered when planning and executing a modern biological research study. We review database resources as well as data mining software tools.  相似文献   

4.
This review summarizes important work in open-source bioinformatics software that has occurred over the past couple of years. The survey is intended to illustrate how programs and toolkits whose source code has been developed or released under an Open Source license have changed informatics-heavy areas of life science research. Rather than creating a comprehensive list of all tools developed over the last 2-3 years, we use a few selected projects encompassing toolkit libraries, analysis tools, data analysis environments and interoperability standards to show how freely available and modifiable open-source software can serve as the foundation for building important applications, analysis workflows and resources.  相似文献   

5.
Bioinformatics software resources   总被引:1,自引:0,他引:1  
This review looks at internet archives, repositories and lists for obtaining popular and useful biology and bioinformatics software. Resources include collections of free software, services for the collaborative development of new programs, software news media and catalogues of links to bioinformatics software and web tools. Problems with such resources arise from needs for continued curator effort to collect and update these, combined with less than optimal community support, funding and collaboration. Despite some problems, the available software repositories provide needed public access to many tools that are a foundation for analyses in bioscience research efforts.  相似文献   

6.
Jemboss reloaded     
Bioinformatics tools are freely available from websites all over the world. Often they are presented as web services, although there are many tools for download and use on a local machine. This tutorial section looks at Jemboss, a Java-based graphical user interface (GUI) for the EMBOSS bioinformatics suite, which combines the advantages of both web service and downloaded software.  相似文献   

7.
We have developed a new Internet service, which provides mobile access to bioinformatics databases and software tools. The BioWAP service facilitates access to basic bioinformatics databases and analysis tools from everywhere without a PC or a laptop computer. Both open source bioinformatics program suites and Internet services, which are not designed for mobile Internet access, were utilized in the BioWAP service. AVAILABILITY: The BioWAP service starting page can be browsed with any WAP terminal from http://bioinf.uta.fi/wml/welcome.wml.  相似文献   

8.
The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS) UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS), adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from and GitHub repository . Users can utilize the SOAP services implemented in Perl directly via WSDL file at (RPC Encoded) and (Document/literal).  相似文献   

9.
ABSTRACT: BACKGROUND: Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. RESULTS: The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. CONCLUSIONS: The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.  相似文献   

10.
Bioinformatics is an integral aspect of plant and crop science research. Developments in data management and analytical software are reviewed with an emphasis on applications in functional genomics. This includes information resources for Arabidopsis and crop species, and tools available for analysis and visualisation of comparative genomic data. Approaches used to explore relationships between plant genes and expressed sequences are compared, including use of ontologies. The impact of bioinformatics in forward and reverse genetics is described, together with the potential from data mining. The role of bioinformatics is explored in the wider context of plant and crop science.  相似文献   

11.
The recent improvements in mass spectrometry instruments and new analytical methods are increasing the intersection between proteomics and big data science. In addition, bioinformatics analysis is becoming increasingly complex and convoluted, involving multiple algorithms and tools. A wide variety of methods and software tools have been developed for computational proteomics and metabolomics during recent years, and this trend is likely to continue. However, most of the computational proteomics and metabolomics tools are designed as single‐tiered software application where the analytics tasks cannot be distributed, limiting the scalability and reproducibility of the data analysis. In this paper the key steps of metabolomics and proteomics data processing, including the main tools and software used to perform the data analysis, are summarized. The combination of software containers with workflows environments for large‐scale metabolomics and proteomics analysis is discussed. Finally, a new approach for reproducible and large‐scale data analysis based on BioContainers and two of the most popular workflow environments, Galaxy and Nextflow, is introduced to the proteomics and metabolomics communities.  相似文献   

12.
Bioinformatics is central to biology education in the 21st century. With the generation of terabytes of data per day, the application of computer-based tools to stored and distributed data is fundamentally changing research and its application to problems in medicine, agriculture, conservation and forensics. In light of this 'information revolution,' undergraduate biology curricula must be redesigned to prepare the next generation of informed citizens as well as those who will pursue careers in the life sciences. The BEDROCK initiative (Bioinformatics Education Dissemination: Reaching Out, Connecting and Knitting together) has fostered an international community of bioinformatics educators. The initiative's goals are to: (i) Identify and support faculty who can take leadership roles in bioinformatics education; (ii) Highlight and distribute innovative approaches to incorporating evolutionary bioinformatics data and techniques throughout undergraduate education; (iii) Establish mechanisms for the broad dissemination of bioinformatics resource materials and teaching models; (iv) Emphasize phylogenetic thinking and problem solving; and (v) Develop and publish new software tools to help students develop and test evolutionary hypotheses. Since 2002, BEDROCK has offered more than 50 faculty workshops around the world, published many resources and supported an environment for developing and sharing bioinformatics education approaches. The BEDROCK initiative builds on the established pedagogical philosophy and academic community of the BioQUEST Curriculum Consortium to assemble the diverse intellectual and human resources required to sustain an international reform effort in undergraduate bioinformatics education.  相似文献   

13.
The European Bioinformatics Institute (EBI) provides numerous free-of-charge, publicly available bioinformatics services that can be divided into the following categories: ftp downloads; data submissions processing and biological database production; access to query; analysis and retrieval systems and tools; user support; training and education and industry support through EBI's SME program. These services are all available at the website. It is imperative that EBI's data as well as the tools to analyse it efficiently are made available in a free and unambiguous way to the scientific community. An important part of the EBI's mission is to make this happen in a fast, reliable and efficient manner. This paper serves as a brief introduction to each of these services.  相似文献   

14.
MetaBasis     
We have developed an integrated web-based relational database information system, which offers an extensive search functionality of validated entries containing available bioinformatics computing resources. This system, called MetaBasis, aims to provide the bioinformatics community, and especially newcomers to the field, with easy access to reliable bioinformatics databases and tools. MetaBasis is focused on non-commercial and open-source software tools. AVAILABILITY: http://metabasis.bioacademy.gr/  相似文献   

15.
Pise is interface construction software for bioinformatics applications that run by command-line operations. It creates common, easy-to-use interfaces to these applications for the Web, or other uses. It is adaptable to new bioinformatics tools, and offers program chaining, Unix system batch and other controls, making it an attractive method for building and using your own bioinformatics web services.  相似文献   

16.
随着深度测序和基因芯片技术的不断发展,基因组、转录组、表达谱数据大量积累。目前,至少有10多个昆虫的基因组已被测序,30多个昆虫的转录组数据被报道。显然,传统的生物统计学方法无法处理如此海量的生物数据。量变引发质变,生物数据的大量积累催生了一门新兴学科,生物信息学。生物信息学融合了统计学、信息科学和生物学等各学科的理论和研究内容,在医学、基础生物学、农业科学以及昆虫学等方面获得了广泛的应用。生物信息学的目标是存储数据、管理数据和数据挖掘。因此,建立维护生物学数据库、设计开发基于模式识别、机器学习、数据挖掘等方法的生物软件,以及运用上述工具进行深度的数据挖掘,是生物信息学的重要研究内容。本文首先简要介绍了生物信息学的历史、研究现状及其在昆虫学科中的应用,然后综述了昆虫基因组学和转录组学的研究进展,最后对生物信息学在昆虫学研究中的应用前景进行了展望。  相似文献   

17.
Taverna: a tool for the composition and enactment of bioinformatics workflows   总被引:12,自引:0,他引:12  
MOTIVATION: In silico experiments in bioinformatics involve the co-ordinated use of computational tools and information repositories. A growing number of these resources are being made available with programmatic access in the form of Web services. Bioinformatics scientists will need to orchestrate these Web services in workflows as part of their analyses. RESULTS: The Taverna project has developed a tool for the composition and enactment of bioinformatics workflows for the life sciences community. The tool includes a workbench application which provides a graphical user interface for the composition of workflows. These workflows are written in a new language called the simple conceptual unified flow language (Scufl), where by each step within a workflow represents one atomic task. Two examples are used to illustrate the ease by which in silico experiments can be represented as Scufl workflows using the workbench application.  相似文献   

18.
A wealth of bioinformatics tools and databases has been created over the last decade and most are freely available to the general public. However, these valuable resources live a shadow existence compared to experimental results and methods that are widely published in journals and relatively easily found through publication databases such as PubMed. For the general scientist as well as bioinformaticists, these tools can deliver great value to the design and analysis of biological and medical experiments, but there is no inventory presenting an up-to-date and easily searchable index of all these resources. To remedy this, the BioWareDB search engine has been created. BioWareDB is an extensive and current catalog of software and databases of relevance to researchers in the fields of biology and medicine, and presently consists of 2800 validated entries. AVAILABILITY: BioWareDB is freely available over the Internet at http://www.biowaredb.org/  相似文献   

19.
As the pace of life science discovery increases, so do the demands on researchers. To remain competitive in the life science industry, researchers must use every tool at their disposal to keep up with new products, protocols, news, and literature in their field. While there are now myriad Web sites that assist researchers with this problem, many suffer from confusing user interfaces, poorly designed search engines, and a narrow information focus. Here, we present LabVelocity, a user-friendly Web site that provides a free multidisciplinary information-gathering service for the life science research community. Using LabVelocity, a researcher can quickly find the products, protocols, technical references, news, MEDLINE abstracts, and interactive software tools necessary for an experiment. This aggregation of information can streamline experimental planning and is especially useful when researchers want to set up a new laboratory or to venture outside their field of expertise.  相似文献   

20.
Programmatic access to data and tools through the web using so-called web services has an important role to play in bioinformatics. In this article, we discuss the most popular approaches based on SOAP/WS-I and REST and describe our, a cross section of the community, experiences with providing and using web services in the context of biological sequence analysis. We briefly review main technological approaches as well as best practice hints that are useful for both users and developers. Finally, syntactic and semantic data integration issues with multiple web services are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号