首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) and palmitoyl-L-carnitine hydrolase (EC 3.1.1.28) activities from rat liver were investigated. 1. Microsomal and mitochondrial-matrix palmitoyl-CoA hydrolase activities had similar pH and temperature optima, although the activities showed different temperature stability. They were inhibited by Pb2+ and Zn2+. The palmitoyl-CoA hydrolase activities in microsomal fraction and mitochondrial matrix were differently affected by the addition of Mg2+, Ca2+, Co2+, K+ and Na+ to the reaction mixture. ATP, ADP and NAD+ stimulated the microsomal activity and inhibited the mitochondrial-matrix enzyme. The activity of both the microsomal and mitochondrial-matrix hydrolase enzymes was specific for long-chain fatty acyl-CoA esters (C12-C18), with the highest activity for palmitoyl-CoA. The apparent Km for palmitoyl-CoA was 47 microM for the microsomal enzyme and 17 microM for the mitochondrial-matrix enzyme. 2. The palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase activities of microsomal fraction had similar pH optima and were stimulated by dithiothreitol, but were affected differently by the addition of Pb2+, Mg2+, Ca2+, Mn2+ and cysteine. The two enzymes had different temperature-sensitivities. 3. The data strongly suggest that palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase are separate microsomal enzymes, and that the hydrolysis of palmitoyl-CoA in the microsomal fraction and mitochondria matrix was catalysed by two different enzymes.  相似文献   

2.
Subcellular fractionation studies of rat liver localized the activity of palmitoyl-L-carnitine hydrolase to the microsomal fraction whereas palmitoyl-CoA hydrolase activity was found both in the microsomal fraction and in mitochrondria. An unusual biphasic sataration curve for palmitoyl-CoA was observed when intact mitochondrial hydrolase activity. Disruption of the mitochondrial structure doubled the palmitoyl-CoA hydrolysis. Discontinuous sucrose gradient centrifugation and digitonin fractionation of rat liver mitochondria demonstrated that a palmitoyl-CoA hydrolase was associated with the matrix fraction. Pure matrix and microsomal fractions showed that the two hydrolase activities were differently affected by the presence of divalent cations. Both the specific activity and the saturation concentration of palmitoyl-CoA were higher for the microsomal enzyme than for the matrix-associated enzyme.  相似文献   

3.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

4.
1. The properties of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase (EC 3.1.3.4) activities of rat lung have been studied in microsomal and cytosol preparations and compared with the properties of the membrane-bound phosphatidate-dependent activities. 2. The microsomal phosphatidic acid phosphatase displayed a prominent pH optimum at 6.5 with a minor peak which varied between 7.5--8 in different experiments. With the cytosol, the major activity was at the higher pH (7.5--8.0) but a distinct optimum was also observed at pH 6.0--6.5. With the membrane-bound substrate, a single broad optimum was observed between pH 7.4 and 8.0 with the cytosol and 6.5--7.5 with the microsomal fraction. 3. Subcellular fractionation studies revealed that the microsomal fraction possessed the greatest proportion of the total phosphatidic acid phosphatase activity and the highest relative specific activity. However, studies with marker enzymes indicated that the aqueously dispersed phosphatidate-dependent activity could be present in plasma membrane, lysosomes and osmiophilic lamellar bodies as well as in the endoplasmic reticulum. 4. The aqueously dispersed phosphatidic acid-dependent activities present in the microsomal and supernatant fractions were inhibited by Ca2+, Mn2+, F- and by high concentrations of Mg2+. In contrast to the membrane-bound phosphatidate-dependent activities, there was little Mg2+ stimulation and only a very slight inhibitory effect was noted with EDTA. A small EDTA-dependent Mg2+ stimulation could be observed with the microsomal fraction but only at the lower pH optimum (6.5). 5. The presence of a number of phosphate esters tended to stimulate rather than inhibit the microsomal activity, indicating that the hydrolase is relatively specific for lipid substrates. Marked inhibitions were noted with lysophosphatidic acid and phosphatidylglycerol phosphate. Phosphatidylcholine produced a slight inhibition. 6. The results indicate that the bulk of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung microsomes and cytosol is not related to the activities observed with membrane-bound phosphatidate. The Mg2+-dependent hydrolase activities may be synonymous. However, unequivocal conclusions will only be possible when the polypeptide or polypeptides responsible for these activities can be purified.  相似文献   

5.
Synthesis of phosphatidylglycerol from CDPdiacylglycerol and glycerol 3-phosphate by membranous subcellular fractions of rat lung and liver was optimal when assayed in the presence of bovine serum albumin and Triton X-100. Specific activities of glycerolphosphate phosphatidyltransferase in all membranous subcellular fractions of lung were several times higher than the corresponding fractions from liver. Distribution of this enzyme in subcellular fractions of lung or liver closely parallel the activity of the mitochondrial enzymes monoamine oxidase and succinate cytochrome c reductase. The phosphatidylglycerol-synthesizing activity in microsomes of both lung and liver was a minor fraction of total tissue activity and could be interpreted as due either to contamination with outer mitochondrial membrane or to a small amount of activity innate to microsomes. These results suggest that phosphatidylglycerol, which is believed to be a component of pulmonary surfactant, is synthesized by lung at a rapid rate relative to liver and that the subcellular distribution of its synthesis is similar in both tissues, with mitochondria as the major site.  相似文献   

6.
The subcellular localizations of carnitine acyltransferase and acyl-CoA hydrolase activities with different chain-length substrates were quantitatively evaluated in human liver by fractionation of total homogenates in metrizamide density gradients and by differential centrifugation. Peroxisomes were found to contain 8-37% of the liver acyltransferase activity, the relative amount depending on the chain length of the substrate. The remaining activity was ascribed to mitochondria, except for carnitine octanoyltransferase, for which 25% of the activity was present in microsomal fractions. In contrast with rat liver, where the activity in peroxisomes is very low or absent, human liver peroxisomes contain about 20% of the carnitine palmitoyltransferase. Short-chain acyl-CoA hydrolase activity was found to be localized mainly in the mitochondrial and soluble compartments, whereas the long-chain activity was present in both microsomal fractions and the soluble compartment. Particle-bound acyl-CoA hydrolase activity for medium-chain substrates exhibited an intermediate distribution, in mitochondria and microsomal fractions, with 30-40% of the activity in the soluble fraction. No acyl-CoA hydrolase activity appears to be present in human liver peroxisomes.  相似文献   

7.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

8.
CDPdiacylglycerol:inositol transferase activity in rabbit lung tissue has been characterized and the optimum conditions for assaying this enzyme in vitro were determined. Rabbit lung tissue CDPdiacylglycerol:inositol transferase activity was found primarily in the microsomal fraction. The pH optimum of the enzyme activity was between 8.8 and 9.4, and the reaction was dependent on either Mn2+ or Mg2+. Detergents and Ca2+ inhibited the activity of the enzyme. The apparent Km values of the enzyme for CDPdioleoylglycerol and myoinositol were 0.18 mM and 0.10 mM, respectively. The reversibility of the reaction catalyzed by CDPdiacylglycerol:inositol transferase in microsomes prepared from rabbit lung tissue was demonstrated by the synthesis of [3H]CMPdiacylglycerol when [3H]CMP and phosphatidylinositol were present in the incubation mixture. The reverse reaction was characterized and its importance in the regulation of the acidic phospholipid composition of surfactant during lung development is discussed. The pH optimum for the reverse reaction was 6.2, and the reverse reaction was also dependent on Mn2+ or Mg2+. The apparent Km value of CDPdiacylglycerol:inositol transferase for CMP was found to be 2.8 mM.  相似文献   

9.
Development of mitochondrial and microsomal choline phosphotransferase in the fetal guinea pig lung was investigated. The activity in fetal mitochondria was more than twice of that in fetal microsomes. However, in adult lung, the enzyme was distributed mostly in microsomes. In fetal lung, both the mitochondrial and microsomal enzyme activity was greatest at approx. 81% of the total gestation period (55 days). The specific activity in the microsomal fraction then declined until term, but increased again in the 24-h newborn from 1.0 to 2.3 nmol/min per mg protein. The activity in the mitochondrial fraction declined after 61 days (2.8 nmol/min per mg) to a minimal level at term (0.6 nmol/min per mg). Although the enzyme activity decreased from day 55 (1.2 nmol/min per mg), the amount of phosphatidylcholine gradually increased between day 55 and term.  相似文献   

10.
Phosphatidylinositol-inositol exchange in a rabbit lung   总被引:3,自引:0,他引:3  
A microsomal fraction prepared from rabbit lung tissue was found to catalyze CDPdiacylglycerol-independent incorporation of [3H]inositol into phosphatidylinositol. This incorporation resulted from CMP-dependent phosphatidylinositol-inositol exchange and did not constitute a net synthesis of phosphatidylinositol. The phosphatidylinositol-inositol exchange activity was distinct from the phospholipid-base exchange enzymes and was specific for inositol. Optimal in vitro phosphatidylinositol-inositol exchange activity was observed at pH 8.5--8.8 and either Mn2+ or Mg2+ was essential for activity. Mercaptoethanol stimulated phosphatidylinositol-inositol exchange and Hg2+ inhibited this activity. In the absence of CMP, no phosphatidylinositol-inositol exchange was observed. CDP (and to a smaller extent CTP) also supported phosphatidylinositol-inositol exchange and this appeared to occur via the generation of CMP during incubations. The apparent Km values of the phosphatidylinositol-inositol exchange enzyme for CMP and inositol were 0.4 mM and 11 microM, respectively. When CDPdiacylglycerol was present at a concentration optimal for CDPdiacylglycerol : inositol transferase activity, CMP-dependent phosphatidylinositol-inositol exchange activity was still observed. However, in the presence of Hg2+ CDPdiacylglycerol inhibited phosphatidylinositol-inositol exchange activity. Several properties of the phosphatidylinositol-inositol exchange enzyme resemble those of CDPdiacylglycerol : inositol transferase, but the two enzymes appear distinct on the basis of different degrees of inhibition by either Ca2+, Hg/+ or heat, and on the basis of different changes in activity during lung development.  相似文献   

11.
Summary We have reported earlier that cholinephosphotransferase (EC 2.7.8.2) is present in both mitochondria and microsomes of fetal guinea pig lung. This study was designed to compare the properties of mitochondrial and microsomal cholinephosphotransferase in fetal guinea pig lung. Various parameters, such as substrate specificity, Km values, sensitivity to N-ethylmaleimide, dithiothreitol and trypsin were measured. Both showed significant preference for unsaturated diacylglycerols over saturated diacylglycerols. Data on Km and Vmax indicate that the affinity of this enzyme for different diacylglycerols varies between the two forms. The ID50 values for N-ethylmaleimide were 20 mM and 12.5 mM for the mitochondrial and microsomal form of the enzyme, respectively. Dithiothreitol showed an inhibitory effect on both; however, the mitochondrial form was inhibited less than the microsomal form. The effects of N-ethylmaleimide and dithiothreitol on both forms of enzyme indicated that the microsomal cholinephosphotransferase requires a higher concentration of -SH for its activity than the mitochondrial enzyme does. The enzyme was inhibited by trypsin in both mitochondria and microsome under isotonic condition suggesting that this enzyme is on the outside of the membrane in both endoplasmic reticulum and mitochondria.  相似文献   

12.
From normal rat liver mitochondrial and microsomal fractions, 4 distinct aldehyde dehydrogenase isozymes with millimolar substrate Km values have been purified and characterized. Two isozymes were isolated from mitochondria and 2 from microsomes. A mitochondrial aldehyde dehydrogenase with a substrate Km in the micromolar range was also identified. Subunit molecular weights for all millimolar Km isozymes is 54,000. The mitochondrial and microsomal millimolar Km isozymes are clearly distinguishable from each other by substrate and coenzyme specificity, pH velocity profiles, and thermal stability. By these same properties, the 2 isozymes from each organelle are virtually identical. The 2 mitochondrial isozymes can be distinguished by apparent molecular weight (I, 170,000; II, approximately 250,000), Km for NADP+, effect of inhibitors, and pI. The 2 microsomal isozymes are of the same apparent molecular weight (approximately 250,000), but are distinguishable by their Km values for benzaldehyde and NADP+, response to inhibitors, and pI.  相似文献   

13.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

14.
The fractionation of rat liver hepatocytes using a mechanical disruption technique followed by centrifugation is reported; the whole procedure requires approximately 10 min. Marker enzyme distribution data are in good agreement with distribution data from standard techniques connected with the production of three subcellular fractions—cytoplasmic, mitochondrial, and microsomal. Electrophoretic analysis of the mitochondrial and microsomal fractions show total band correspondence between the fractions produced by the method and traditional techniques. Examination of the fractions by electron microscopy supports the view that the mitochondrial fraction is comprised of both intact mitochondria and mitochondria from which the outer membrane has been removed. The microsomal fraction contains discrete vesicles derived from both rough and smooth endoplasmic reticulum.  相似文献   

15.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

16.
The pretreatment of rat liver mitochondrial fractions with phospholipase C preparations enhanced the incorporation of cytidine diphospho-[14C]-choline into phospholipids several-fold. Similar pretreatment of the microsomal fraction produced a similar stimulation. When the extent of microsomal contamination in the mitochondria was determined, and increments of pretreated microsomes were added to the mitochondria, the incorporation values extrapolated to zero for zero microsomal contamination. It was concluded that lecithin biosynthesis from endogenous diglycerides in the mitochondrial fractions could be ascribed to contaminating microsomes.  相似文献   

17.
Calcium uptake by the microsomal and mitochondrial fractions of pig coronary artery and guinea pig ileum was studied in the presence of ATP, ATP plus oxalate and without ATP and oxalate. Microsomes and mitochondria of both smooth muscles were found to be unable to accumulate appreciable amounts of calcium in the absence of ATP. Oxalate noticeably stimulated the calcium uptake of the mitochondrial fraction from pig coronary artery but had little effect on calcium uptake by the microsomal fraction of this smooth muscle. The calcium uptake of microsomes and mitochondria from guinea pig ileum was not or only slightly enhanced by oxalate. There are typical kinetics regarding the time course and the extent of calcium uptake by microsomes and mitochondria from pig coronary artery and guinea pig ileum. In comparison, considerable qualitative and quantitative differences between both smooth muscles are observed. The high ATP-dependent calcium uptake capacity of the mitochondria from pig coronary artery and guinea pig ileum are a further argument for the hypothesis that these organelles may play an important role in the contraction-relaxation mechanism of smooth muscle.  相似文献   

18.
1. Acyl-CoA hydrolase activities, using palmitoyl-CoA and decanoyl-CoA as substrates, were highest in the proximal part and lowest in the distal part of the guinea-pig small intestine. Butyryl-CoA hydrolase activity was not found in any of the homogenates. 2. The acyl-CoA hydrolases showed a complex subcellular distribution when compared to classical marker enzymes. The specific activity of the hydrolase was highest in the microsomal fraction, and lowest in the soluble fraction when palmitoyl-CoA was used as substrate. When decanoyl-CoA was used as substrate, highest activity was found in the mitochondrial/lysosomal fraction and lowest in the microsomal fraction. 3. Gel filtration on an ultrogel AcA-44 column separated the palmitoyl-CoA hydrolase of the cytosol fraction into three or four fractions. 4. Palmitoyl-carnitine hydrolase was present in the microsomal and the nuclei fractions. The distribution was mostly similar to the alkaline phosphatase suggesting a brush border localization.  相似文献   

19.
We could show an ATPase in mitochondrial and microsomal fractions of sheep arteria carotis communis and arteria coronaria of cattle which can be stimulated by Ca2+ of Mg2+, respectively. The enzyme has a higher affinity for Ca2+ than for Mg2+. The maximum activity of the Mg(Ca)-ATPase was found at 2-4 mM Ca2+ or Mg2+, respectively. Higher concentrations of these ions inhibit the enzyme. Mn2+, Sr2+ and Co2+ can substitute Ca2+ in splitting of ATP by the ATPase of both fractions of ateria coronaria of cattle. The ions K+ and Na+, variation of temperature and pH and a variety of pharmacological active compounds has the same effect on the ATPase stimulated by Ca2+ or Mg2+. These findings prove that Ca2+ and Mg2+ act at the same site of the ATPase of the mitochondrial and microsomal fraction of vascular smooth muscle.  相似文献   

20.
J Comte  D C Gautheron 《Biochimie》1978,60(11-12):1289-1298
Evidence is presented about the dual location of NADPH-cytochrome c reductase in mitochondrial outer membranes as well as in microsomes, from pig heart. A high specific activity, was found in both fractions, even after their purification by washing, digitonin treatments, or passages on sucrose gradients. A large fraction of the total activity was associated with both mitochondria and microsomes. Mitochondrial outer membrane differs from microsomes by a low choline phosphotransferase activity and the absence of cytochrome P-450. The properties of mitochondrial and microsomal rotenone-insensitive NADH- and NADPH-cytochrome c reductases were studied. In microsomes, both activities have the same optimum pH (8.5) ; in contrast, in mitochondria they have a different one. The Km-NADPH were always much higher than those for NADH. In mitochondria the Km for NAD(P)H were dependent on cytochrome c concentration. The results show that the rotenone-insensitive NADH- and NADPH-cytochrome c reductases of mitochondria and microsomes have quite different behavior and do not appear to be supported by the same enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号