首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

2.
AimsAlpha1D-adrenoceptors (α1D-ARs) located in the spinal cord are involved in the control of lower urinary tract function. In order to clarify the effect of α1D-ARs on storage function in the spinal cord, we examined the effect of oral administration and intrathecal injection of the α1D/A-AR antagonist, naftopidil, on bladder activity, as well as the effect of naftopidil on bladder wall histology, in female rats with spinal cord injury (SCI).Main methodsAdult female Sprague–Dawley rats with Th9–10 spinal cord transection were used. In SCI rats with or without 5 mg/day of naftopidil for 4 weeks, bladder activity was examined via continuous cystometry. In other SCI rats, bladder activity was examined before and after intrathecal injection of naftopidil. In addition, bladder wall histology was compared between SCI rats with or without oral administration of naftopidil for 4 weeks.Key findingsOral administration of naftopidil decreased the number of non-voiding contractions (NVCs). Intrathecal injection of naftopidil prolonged the interval between voiding contractions, decreased the maximum voiding contraction pressure and the number of NVCs, and increased bladder capacity without affecting the residual urine volume. Oral administration of naftopidil also decreased bladder wall fibrosis.SignificanceThe α1D/A-AR antagonist naftopidil might act on the bladder and spinal cord to improve detrusor hyperreflexia in the storage state in SCI female rats. Naftopidil also suppressed bladder wall fibrosis, suggesting that it may be effective for the treatment of neurogenic lower urinary tract dysfunction after SCI.  相似文献   

3.
目的:观察鞘内注射选择性一氧化氮合酶(nNOS)和诱导型一氧化氮合酶(iNOS)抑制剂对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响,以探讨nNOS和iNOS在吗啡依赖和戒断反应中的作用。方法:在大鼠吗啡依赖和戒断模型上,采用行为学、免疫组织化学和Western blot方法观察鞘内应用nNOS抑制剂7-硝基吲哚(7-Ni)和iNOS抑制剂氨基胍(AG)对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响。结果:①鞘内注射7-Ni、AG可明显减轻吗啡依赖大鼠戒断症状,戒断组戒断症状评分为28.6±4.89,7-Ni组为16.2±3.99(P<0.01),AG组为22.94±4.0(P<0.05);戒断组TEA评分为13.5±2.55,7-Ni、AG组分别为7.5±2.56、10.5±2.71(P<0.05);②鞘内注射7-Ni、AG可减少脊髓背角Fos阳性神经元的数目,7-Ni、AG组为228.2±49.5、296.8±50.6,低于戒断组(380±71,P<0.05);③7-Ni、AG组nNOS和iNOS阳性神经元的数目分别为169±32、10.2±2.85,均低于戒断组(239±45,16.8±5.1,P<0.05),两给药组脊髓NOS蛋白的表达也显著减少。结论:nNOS和iNOS抑制剂能减轻吗啡依赖及戒断大鼠的戒断症状和在脊髓水平抑制nNOS和iNOS的表达,nNOS起主要作用而iNOS可能起辅助作用。  相似文献   

4.
The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure.  相似文献   

5.
The purpose of this paper was to simultaneously examine changes in urothelial ATP and NO release in normal and spinal cord injured animals as well as in spinal cord injured animals treated with botulinum toxin type A (BoNT-A). Furthermore we correlated changes in transmitter release with functional changes in bladder contraction frequency, and determined the effects of BoNT-A on bladder efferent nerve function. Normal and spinal cord injured rat bladders were injected on day 0 with either vehicle (saline containing bovine serum albumin) or BoNT-A. On day 2, in vitro neurotransmitter release and bladder strip contractility studies as well as in vivo cystometrographic studies were conducted. Resting ATP release was significantly enhanced following spinal cord injury (i.e. 57% increase, p<0.05) and was unaffected by BoNT-A treatment. SCI increased hypoosmotic evoked urothelial ATP release by 377% (p<0.05). BoNT-A treatment reduced evoked ATP release in SCI bladders by 83% (p<0.05). In contrast, hypoosmotic stimulation induced NO release was significantly inhibited following SCI (i.e. 50%, p<0.05) but recovered in SCI rats treated with BoNT-A (i.e. 195% increase in NO release in SCI-BTX-treated rats compared to SCI controls, p<0.01). Changes in urothelial transmitter release coincided with a significant decrease in non-voiding bladder contraction frequency (i.e. 71%, p<0.05) in SCI-BTX rats compared to SCI rats. While no difference was measured between neurally evoked contractile amplitude between SCI and SCI-BTX animals, atropine (1 microM) inhibited contractile amplitude to a greater extent (i.e. 76%, p<0.05) in the SCI-BTX group compared to the SCI group. We hypothesize that alterations in the ratio of excitatory (i.e. ATP) and inhibitory (i.e. NO) urothelial transmitters promote bladder hyperactivity in rat bladders following SCI that can be reversed, to a large extent, by treatment with BoNT-A.  相似文献   

6.
Autophagy is an intracellular catabolic mechanism for the degradation of cytoplasmic constituents in the autophagosomal–lysosomal pathway. This mechanism plays an important role in homeostasis and it is defective in certain diseases. Preceding studies have revealed that autophagy is developing as an important moderator of pathological responses associated to spinal cord injury (SCI) and plays a crucial role in secondary injury initiating a progressive degeneration of the spinal cord. Thus, based on this evidence in this study, we used two different selective inhibitors of mTOR activity to explore the functional role of autophagy in an in vivo model of SCI as well as to determine whether the autophagic process is involved in spinal cord tissue damage. We treated animals with a novel synthetic inhibitor temsirolimus and with a dual mTORC1 and mTORC2 inhibitor KU0063794 matched all with the well-known inhibitor of mTOR the rapamycin. Our results demonstrated that mTOR inhibitors could regulate the neuroinflammation associated to SCI and the results that we obtained evidently demonstrated that rapamycin and temsirolimus significantly diminished the expression of iNOS, COX2, GFAP, and re-established nNOS levels, but the administration of KU0063794 is able to blunt the neuroinflammation better than rapamycin and temsirolimus. In addition, neuronal loss and cell mortality in the spinal cord after injury were considerably reduced in the KU0063794-treated mice. Accordingly, taken together our results denote that the administration of KU0063794 produced a neuroprotective function at the lesion site following SCI, representing a novel therapeutic approach after SCI.  相似文献   

7.
Nitric oxide (NO) exerts both, pro-apoptotic and anti-apoptotic actions and appears to be acritical factor inneuronal degenerative and regenerative processes. NO is synthesized from L-arginine by NO synthase occurring in three isoforms of (neuronal, nNOS; endothelial, eNOS; inducible, iNOS). In a mice sciatic nerve model the regenerative outcome was assessed when the endogenous NO supply was deficient by knocking out the respective NOS isoform and compared to that of wild type mice after nerve transection. In nNOS knock-out mice a delay in regeneration, preceded by slowedWallerian degeneration and a disturbed pruning of uncontrolled sprouts, was observed. This was associated with a delayed recovery of sensory and motor function. Additionally, deficiency of nNOS led after nerve cut to a substantial loss of small and medium-sized dorsal root ganglia neurons, spinal cord interneurons and, to a lesser extent, spinal cord motor neurons. A lack of iNOS resulted in a delayed Wallerian degeneration and impaired regenerative outcome without consequences for neuronal survival. A lack of eNOS was well tolerated, although a delay in nerve revascularization was observed. Thus, after peripheral nerve lesion, regular NOS activity is essential for cell survival and recovery with reference to the nNOS isoform.  相似文献   

8.
The aim of the study was to investigate the interaction between nitric oxygenase (NOS)/nitric oxide (NO) and heme oxygenase (HO)/carbon monoxide (CO) system in the pathogenesis of recurrent febrile seizures (FS). On a rat model of recurrent FS, the ultrastructure of hippocampal neurons was observed under electron microscopy, and expression of neuronal NOS (nNOS) in hippocampus and NO formation in plasma were examined after treatment with ZnPP-IX, an HO-1 inhibitor. In the ultrastructure of hippocampal neurons, the expression of HO-1 in hippocampus and CO formation in plasma were examined after treatment with L-NAME, a NOS inhibitor. We found that hippocampal neurons were injured after recurrent FS. The gene and protein expression of nNOS and HO-1 increased markedly in hippocampus in FS rats, while CO formation in plasma increased markedly and the concentration of NO in plasma increased slightly. ZnPP-IX could worsen the neuronal damage of recurrent FS rats. However, it further increased the expression of nNOS and endogenous production of NO obviously. L-NAME alleviated the neuronal damage of recurrent FS rats, but decreased the expression of HO-1 and CO formation. The results of this study suggested that endogenous NOS/NO and HO/CO systems might interact with each other and therefore play an important regulating role in recurrent FS brain damage.  相似文献   

9.
Previous studies indicated that nitric oxide (NO) is involved in secondary damage of spinal cord injury (SCI), which worsens the primary physical injury to the central nervous systems. Recently, nitric oxide synthase interacting protein (NOSIP) has been identified to interact with neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase by inhibiting the NO production. However, its expression and function after a central nervous system injury remains unclear. In this study, we examined the expression and cellular localization of NOSIP in the spinal cord of an adult rat. Western blot analysis indicated that NOSIP protein levels increased at day1 post-injury and peaked at day 14. Double immunofluorescence staining showed that NOSIP was primarily expressed in neurons and glial cells in the intact spinal cord. Interestingly, this study also showed that the expression of NOSIP significantly increased in astrocytes after injury. Furthermore, injury-induced expression of NOSIP was co-expressed with proliferating cell nuclear antigen (PCNA) positive astrocytes after injury. We also showed the NOSIP was co-localized with nNOS in gray matter and white matter after SCI. All these data taken together suggested that NOSIP may play an important roles in astrogliogenesis after a spinal cord injury.  相似文献   

10.
In JH  Lee EJ  Lee BH  Lim YG  Chun MH 《Molecules and cells》2003,15(3):406-411
The expression and cellular localization of neuronal nitric oxide (NO) synthase (nNOS) were studied in the rabbit spinal cord following ischemic injury induced by clamping the descending aorta. In the normal spinal cord, nNOS immunoreactivity was localized to certain motor neurons located in the margin of the ventral horn. Following transient ischemia, immunoreactive spinal neurons increased in number, peaking five days after reperfusion. Quantitative evaluation by western blotting showed that nNOS peaked at 180% of control levels five days after reperfusion and decreased to 120% of controls by 14 days. These findings suggest that overproduced NO may act as a neurotoxic agent in the ischemic spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号