首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 210 毫秒
1.
Lin A  Wang Y  Tang J  Xue P  Li C  Liu L  Hu B  Yang F  Loake GJ  Chu C 《Plant physiology》2012,158(1):451-464
Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H(2)O(2)) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H(2)O(2)-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H(2)O(2)-induced leaf cell death in rice.  相似文献   

2.
PPF1是一个与植物营养生长相关的基因。它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性。免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜 ,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达 ,在长日照豌豆同时期非正常叶绿体中丰度非常低。对转基因拟南芥和野生型植株的叶片衰老进程比较发现 ,PPF1在拟南芥中的过量表达可以延缓叶片的衰老 ,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度。对转基因拟南芥的超微结构分析显示 ,PPF1在拟南芥中过量表达时 ,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜 ;相反 ,反义PPF1表达抑制其在拟南芥中的同源物时 ,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统。这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关。我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育。  相似文献   

3.
Sørmo CG  Brembu T  Winge P  Bones AM 《PloS one》2011,6(4):e18530
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/-)/miro2-2(-/-) plants. Compared to miro1(+/-) plants, the miro1(+/-)/miro2-2(-/-) plants showed increased segregation distortion. miro1(+/-)/miro2-2(-/-) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/-)/miro2-2(-/-) plants. Further investigations revealed that loss of MIRO2 (miro2(-/-)) function in the miro1(+/-) background enhanced pollen tube growth defects. In developing miro1(+/-)/miro2(-/-) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/-) background enhances the miro1(+/-) phenotype significantly, even though miro2(-/-) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/-)/miro2(-/-) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages.  相似文献   

4.
5.
Nitric oxide (NO) is a gaseous molecule that participates in numerous plant signalling pathways. It is involved in plant responses to pathogens and development processes such as seed germination, flowering and stomatal closure. Using a permeable NO-specific fluorescent probe and a bacterial reporter strain expressing the lacZ gene under the control of a NO-responsive promoter, we detected NO production in the first steps, during infection threads growth, of the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction. Nitric oxide was also detected, by confocal microscopy, in nodule primordia. Depletion of NO caused by cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide), an NO scavenger, resulted in a significant delay in nodule appearance. The overexpression of a bacterial hmp gene, encoding a flavohaemoglobin able to scavenge NO, under the control of a nodule-specific promoter (pENOD20) in transgenic roots, led to the same phenotype. The NO scavenging resulting from these approaches provoked the downregulation of plant genes involved in nodule development, such as MtCRE1 and MtCCS52A. Furthermore, an Hmp-overexpressing S. meliloti mutant strain was found to be less competitive than the wild type in the nodulation process. Taken together, these results indicate that NO is required for an optimal establishment of the M. truncatula-S. meliloti symbiotic interaction.  相似文献   

6.
Active gibberellins (GAs) are endogenous factors that regulate plant growth and development in a dose-dependent fashion. Mutant plants that are GA deficient, or exhibit reduced GA responses, display a characteristic dwarf phenotype. Extragenic suppressor analysis has resulted in the isolation of Arabidopsis mutations, which partially suppress the dwarf phenotype conferred by GA deficiency and reduced GA-response mutations. Here we describe detailed studies of the effects of two of these suppressors, spy-7 and gar2-1, on several different GA-responsive growth processes (seed germination, vegetative growth, stem elongation, chlorophyll accumulation, and flowering) and on the in planta amounts of active and inactive GA species. The results of these experiments show that spy-7 and gar2-1 affect the GA dose-response relationship for a wide range of GA responses and suggest that all GA-regulated processes are controlled through a negatively acting GA-signaling pathway.  相似文献   

7.
8.
An 11-yr experimental study of the cost of reproduction in three wild populations of the perennial orchid Cypripedium acaule contrasted experimental plants that were repeatedly hand-pollinated and often made fruits with control plants that were not hand-pollinated and only rarely made fruits. Repeated flowering without subsequent fruit production resulted in no detectable reduction in either plant size or probability of flowering in subsequent years. A cost of fruit production was evident in experimental plants in all three populations in terms of a reduced probability of flowering and smaller leaf area in subsequent years, but was not evident in terms of mortality rate. Experimental effects of fruit production reached maximum values at 3-7 yr, depending on the population. The probability of remaining dormant below ground in a given year was strongly dependent on plant size in the previous year. Furthermore, the length of the dormancy period (one to several years) was a significant and inverse function of plant size just prior to dormancy. Sample sizes and the consequent ability to detect experimental effects declined over time as more plants died or stopped flowering. Four to seven years appears to be an optimal duration for studies of the cost of reproduction in perennial herbs similar to this species. Studies lasting less than 4 yr may be too brief to reveal experimental effects, whereas those lasting more than 7 yr may fail to reveal new insights.  相似文献   

9.
The response of antioxidant enzymes to cyclic drought was studied in control non-transformed tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) and two types of transgenic Pssu-ipt tobacco (grafted on wild rootstock and poorly rooted progeny of F1 generation) grown under different conditions of irradiation (greenhouse, referred as high light, versus growth chamber, referred as low light). Water stress cycles started with plants at two contrasting developmental stages, i.e., at the stage of vegetative growth (young) and at the onset of flowering (old). Drought reduced the growth of SR1 plants compared with transgenic ones, particularly, when treatment started in earlier stage of plant development. Relative leaf water content was significantly lower (below 70%) in all transgenic grafts and plants compared with the wild type, irrespective of age, drought, and growth conditions. The response of antioxidant enzymes was significantly dependent on plant type and plant age; nevertheless, growth conditions and water stress also affected enzyme activities. Contrary to non-transgenic tobacco, where about half of glutathione reductase activity was found in older plants, both transgenic types exhibited unchanged activities throughout plant development and stress treatment. No differences were found in catalase activity, although the growth in the greenhouse caused a moderate increase in all older plants. In contrast to non-transgenic and Pssu-ipt rooted plants, peroxidase activities (ascorbate, guaiacol, and syringaldazine peroxidase) in older Pssu-ipt grafts were up to four times higher, irrespective of growth and stress, nevertheless, the effect seemed to be age-dependent. Superoxide dismutase (SOD) activity was affected particularly by plant age but also by growth conditions. Unlike in older plants, water stress caused an increase of SOD activities in all younger plants. The differences observed in activities of enzymes of intermediary metabolism (i.e., malic enzyme and glucose-6-phosphate dehydrogenase) revealed that transgenic grafts probably compensated differently for a decrease of ATP and NADPH than control and transgenic rooted plants under stress.  相似文献   

10.
The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号