首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Biodegradable, ammonium-baited spheres treated with the neonicotinoid insecticide Provado (imidacloprid) at 2% (AI) were evaluated for controlling blueberry maggot flies, Rhagoletis mendax Curran. Three strategies for sphere deployment in highbush blueberries, Vaccinium corymbosum L., were compared with untreated control plots in 1999 and once again compared against control plots and organophosphate insecticide sprays in 2000. The patterns of sphere deployment were as follows: (1) perimeter deployment in which spheres were hung individually and spaced equally around the perimeter of experimental plots; (2) cluster deployment in which four groups of three spheres were hung in equally spaced perimeter locations of experimental plots; and (3) uniform deployment in which spheres were placed 10 m apart (in a grid-like pattern) within experimental plots. In 1999, there were no significant differences in fruit injury levels based on observed R. mendax oviposition scars and reared larvae among plots containing imidacloprid-treated spheres in perimeter, cluster, and internal-grid patterns. However, all plots containing spheres had significantly lower fruit infestation levels (<2%), compared with unsprayed control plots with no spheres deployed, which had infestation levels (>20%). In 2000, there were no significant differences in fruit injury based on observed R. mendax oviposition scars between plots containing imidacloprid-treated spheres in the three deployment strategies tested and plots that received Guthion (Azinphosmethyl) spray applications. However, significantly fewer R. mendax larvae were reared from berries collected from plots that received two applications of Guthion compared with plots in which imidacloprid-treated spheres were deployed. Irrespective of sphere deployment strategies, all sphere-treated and sprayed plots had significantly lower injury levels (<1.5%), based on numbers of reared larvae compared with berries collected from the control plots (>4.0%). Based on captures of flies on unbaited Pherocon AM boards placed in the center of treatment plots, we observed a suppression of R. mendax in plots containing imidacloprid-treated spheres compared with control plots. The potential of using imidacloprid-treated spheres as a behavioral control integrated pest management tactic for blueberry maggot flies is discussed.  相似文献   

2.
Trapping results indicate that pepper maggot, Zonosemata electa (Say), flies occupy tree canopies adjacent to fields when not on host plants. Several in- and near-field trap positions were used to find a reliable monitoring system for adult pepper maggots. Traps baited with liquid ammonium hydroxide (Stills-style trap), hung in the canopy of trees on the edges of pepper fields, caught significantly more Z. electa flies than when positioned lower along the treeline or in the field. In a second experiment, significantly more pepper maggot flies were captured in sugar maples compared with choke cherry trees, which indicates a pest preference for certain nonhost habitats. The lowest trap height tested (2.1 m) failed to capture Z. electa flies in either tree species when the pest population level was low. These studies demonstrated that pepper maggot flies can be reliably detected with Stills-style traps positioned at approximately 6.4 m height within the canopy of sugar maple trees adjacent to pepper fields. Fruit oviposition scars also are useful site-specific indicators of pepper maggot presence/absence and may aid in determining if insecticide applications are necessary and in timing sprays.  相似文献   

3.
Delta and wing traps baited with synthetic female sex pheromone of Leucinodes orbonalis Guenée were found to catch and retain ten times more moths than either Spodoptera or uni-trap designs. Locally-produced water and funnel traps were as effective as delta traps, although 'windows' cut in the side panels of delta traps significantly increased trap catch from 0.4 to 2.3 moths per trap per night. Trap catch was found to be proportional to the radius of sticky disc traps in the range 5-20 cm radius, discs with a 2.5 cm radius caught no moths. Wing traps placed at crop height caught significantly more moths than traps placed 0.5 m above or below the crop canopy. Replicated integrated pest management (IPM) trials (3 x 0.5 ha per treatment) were conducted in farmers fields with young and mature eggplant crops. Farmers applied insecticides at least three times a week in all check and IPM plots. In addition pheromone traps were placed out at a density of 100 per ha and infested shoots removed weekly in the 0.5 ha IPM plots. Pheromone trap catches were reduced significantly from 2.0 to 0.4 moths per trap per night respectively in check and IPM plots in a young crop and 1.1 to 0.3 moths per trap per night in check and IPM plots respectively in a mature crop. Fruit damage was significantly reduced from an average of 41.8% and 51.2% in check plots of young and mature crops respectively to 22% and 26.4 respectively in the associated IPM plots. Significant differences in pheromone trap catches and fruit damage were attained four and two weeks respectively after IPM treatments began in the mature crop whereas in the immature crop significant differences were not observed for the first eight to nine weeks respectively. The relative impact of removing infested shoots and mass trapping on L. orbonalis larval populations was not established in these trials but in both cases there was an estimated increase of approximately 50% in marketable fruit obtained by the combination of control techniques compared to insecticide treatment alone.  相似文献   

4.
In 1998 and 1999, pepper maggot flies, Zonosemata electa (Say), were excluded from pepper plants with row covers for 0-6 wk after initial oviposition was detected. The proportion of oviposition attempts (scars) and larval infestation that occurred each week and the cumulative oviposition and infestation over time were determined. Due to environmental factors, initial oviposition was delayed, and the numbers of oviposition scars on fruit and flies caught on traps were lower in 1998 than in 1999. The proportions of scarred or infested fruit were low (< 8% of total) during the first 7 d after the pest was detected each year. Oviposition peaked 8-14 d after beginning in 1998, but not until 21-28 d after the initial scar was detected in 1999. Because systemic insecticides tend to provide control of adults and most hatching larvae, it may be possible to delay the initial insecticide application for up to a week after oviposition commences and still minimize fruit damage. There was no association with either year between the proportion of flies captured on traps and the proportion of oviposition scars on fruit the same week or 1 and 2 wk later.  相似文献   

5.
Locally-produced clear plastic water traps (12 cm x 14 cm base and 21 cm height) were optimized for use in large-scale mass trapping trials for control of brinjal fruit and shoot borer, Leucinodes orbonalis Guenée. Changing the shape (square and triangular) and number (two and four) of entry holes in the water trap had no significant effect on trap catch. Significantly more male moths were caught in traps treated with water containing powdered detergent than liquid detergent, light gear oil or insecticide. All water traps tested caught significantly higher numbers of moths than sticky delta traps with open sides under farmers' field conditions. Trap catches per 100 m2 were found to increase with increasing number of traps from 3 to 6 but the difference in catch between 4 and 6 traps per 100 m2 was not significant. Two small-scale replicated integrated pest management (IPM) trials were conducted consisting of the optimized water trap placed out with 10 m spacing (4 per 100 m2) and infested shoots pruned and destroyed. The first season trial had two treatments, IPM and farmers' practice in which farmers applied insecticide every two days in the peak harvest period. Overall, the percentage of healthy fruit and yields in both treatments were comparable at 53.8 and 49.6% and 20 and 19.4 tonnes per ha in the IPM and farmers' practice plots respectively. However, the initial infestations in the IPM plots (68%) were significantly higher than in farmers' practice plots (16%) due to the proximity of the nurseries used for the IPM plots to stacks of brinjal crop residues from the previous season that acted as a source of infestation. The second season's trials contained a third treatment in which IPM and farmers' practice were combined. The percent total healthy fruits harvested were 46.1, 58.6 and 69.1% respectively for the farmers' practice, farmers' practice plus IPM and IPM alone. Averaged total fruit yields were approximately 12 tonnes per ha for the farmers' practice plots and 30 tonnes per ha for each of the IPM-treated plots. The IPM plot had significantly fewer infested fruit than the IPM plus farmers practice plots and this was attributed to the activity of the larval parasitoid Trathala flavo-orbitalis (Cameron) that was suppressed in trial plots treated with insecticides.  相似文献   

6.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

7.
Trap cropping may exploit a pest's dispersal and host selection behavior in order to protect a desired crop. Here, we used a combination of visual sampling, immunomarking, and harmonic radar to assess host plant selection and retention time of the highly mobile and invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), as it moves within and between a polyculture trap crop of sorghum and sunflower, and a bell pepper cash crop. Visual sampling demonstrated no significant differences in H. halys densities across crops, whereas dislodging stink bugs to collect for protein analysis revealed ca. 4× more bugs in the trap crop plants than in the peppers. In total 145 H. halys were collected and of these 6% were doubly marked with proteins, demonstrating that minimal movement occurred between the two planting systems. Tracking tagged H. halys with harmonic radar revealed that the trap crop retained adult H. halys within the plots 1.5× longer and reduced their movement by nearly half compared with bugs released in the pepper cash crop. The data suggest the trap crop of sunflower plus sorghum has the potential to attract and arrest the invasive H. halys, demonstrating that trap cropping may operate as an effective management tool.  相似文献   

8.
Winter squash is a vital agricultural commodity worldwide. In the Northeastern United States, the primary insect pest is the striped cucumber beetle, Acalymma vittatum F. Using a Blue Hubbard squash (Cucurbita maxima Duchesne) perimeter trap crop system can reduce insecticide use by >90% in butternut squash (C. moschata Poir), the primary winter squash grown in this region. Despite the savings in insecticide costs, growers may be reluctant to give up field space for a perimeter crop of Blue Hubbard squash, which comprises only 5% of the winter squash market in New England as compared with 19% for buttercup squash. Finding a more marketable trap crop would lower the barrier for adoption of this system. We tested eight varieties of three species of cucurbits for attractiveness to beetles relative to Blue Hubbard and butternut squash, and chose buttercup squash as the most promising replacement. We compared the effect of a buttercup border, Blue Hubbard border, or control (no border) on beetle numbers, herbivory, insecticide use, pollination, and pollen limitation in the main crop. We found that buttercup squash performed equally well as Blue Hubbard as a trap crop, with 97% reduction in total insecticide use compared with control fields. Honey bees (Apis mellifera L.) and squash bees (Peponapis pruinosa Say) were the predominant pollinators, and border treatments did not affect visitation. Hand pollination did not increase reproduction or yield, indicating that natural pollination was sufficient for full yield. This study confirms the effectiveness of perimeter trap crop systems and offers growers a more marketable trap crop for managing cucumber beetle damage.  相似文献   

9.
10.
High biodiversity is an important component of sustainable agricultural systems, and previous studies have found that increases in the diversity of the natural enemies of pests are associated with decreases in pest populations. Weaver ants are well known for their highly territorial and aggressive behaviour and for their control efficiency of many insect pests in tropical crop trees. Because of this, the ants have been used as a key component in integrated pest management (IPM) programmes for tropical crop trees. In implementing the IPM programmes, we received a number of enquiries related to whether weaver ants have negative effects on arthropod diversity and other natural enemies in orchard systems due to their aggressive behaviour. To answer these questions, we regularly sampled canopy arthropods in cashew and mango orchards in the Northern Territory of Australia in 1996, 2002 and 2003. We sampled, using a vacuum sampler, orchards with and without weaver ants. Cashew and mango plots with abundant weaver ants had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with plot where the weaver ant was absent. The study also showed that the application of insecticides reduced arthropod diversity and the ratio of natural enemies to insect pests in a mango orchard. However, insecticide spray did not affect natural enemy diversity and abundance, which may be related to a high immigration rate of natural enemies in small plots surrounded by areas that were not sprayed.  相似文献   

11.
The efficacy of two insecticide control programs for managing the codling moth, Cydia pomonella (L.), and the apple maggot, Rhagoletis pomonella (Walsh), were compared in the Georgian Bay, London, Niagara, and Quinte apple production areas of Ontario during 1995, 1996, and 1997. In the border spray program, an initial cover spray of organophosphorus insecticide was applied to eradicate codling moths that may have colonized a test plot during the previous growing season. Subsequent sprays were applied only to a four-tree-wide zone (approximately 20 wide) around the perimeter of the plot to control immigrating codling moths or apple maggots. In the cover spray program, all sprays of organophosphorus insecticide were applied to the entire plot. Apple maggot injury was significantly greater in border spray program plots than in cover spray program plots only during 1995 in the London production area. There was no significant difference in codling moth injury between border spray and cover spray plots in the four production areas during the three-year study. The elimination of cover sprays from border spray plots during July and August may have left the apple crop more susceptible to damage by second generation larvae of the obliquebanded leafroller, Choristoneura rosaceana (Harris), in the London production area during 1995. There was a trend of increasing codling moth injury from 1995 to 1997 in two border spray plots, and apple maggot injury was detected in these plots during the third year of the study.  相似文献   

12.
Two insecticide formulations containing the naturalyte insecticide spinosad, GF-120 Fruit Fly Bait and SpinTor 2 SC, were compared for control of apple maggot, Rhagoletis pomonella (Walsh), and blueberry maggot, Rhagoletis mendax Curran. In 2002 and 2003, larval infestation in blueberries and apples was significantly lower in plots treated with GF-120 (spinosad bait) or SpinTor than in untreated control plots. Fruit fly infestation in apples was reduced by 67% in 2002 after weekly application of GF-120 for 6 wk. Six weeks of GF-120 treatment reduced infestation in blueberries by 85% in 2002 and 98% in 2003. Plots treated weekly with the bait component of GF-120 for 6 wk had significantly higher infestation of blueberry maggot larvae compared with untreated plots in 2002. Observations of wild R. mendax flies revealed that similar numbers of flies landed on blueberry foliage treated with spinosad bait, the bait component alone, or water droplets. However, flies on spinosad bait and bait treated plants spent significantly more time within 5 cm of the treatment droplets compared with control (water) droplets. Overall, the results demonstrate a high degree of efficacy of baited spinosad formulations against these key pests of temperate fruit and suggest that GF-120 is an arrestant for foraging flies.  相似文献   

13.
Onion maggot (Delia antiqua) is an economically important pest of Allium crops in temperate regions throughout the world. Management of this pest is necessary to achieve economic returns and depends on insecticide regimes and cultural management. Current cultural management especially altering planting date, field location and crop rotation depend on monitoring. We evaluated the effect of shape, size, colour and chemical attractants on trap catch of field populations of adult D. antiqua flies in upstate New York. White, large diameter, spherical traps in conjunction with Delia Lure attractant performed the best in attracting and catching D. antiqua adults. These results suggest an improved means of attracting and capturing D. antiqua populations which could be useful in monitoring efforts and development of attract and kill strategies for pest control.  相似文献   

14.
The walnut husk fly Rhagoletis completa Cresson, a pest originating from North-America, was detected for the first time in Europe in 1991. The life cycle and phenology of R. completa were studied, during two successive seasons, in two commercial orchards located in northern Italy. The pest develops one generation per year. Fly emergence lasted from early July to the second half of August. Oviposition was detected from late July to early September, with peaks between August 5 and 18. First instar larvae were recorded from early August and mature larvae left husks from late August onwards to pupate in the soil. The seasonal patterns of nuts infestation showed rapid growths in August following oviposition peaks. Nuts infestation levels in the untreated plots of the two orchards, ranged from 74–91% in the first year to 89–91% in the following season. Relatively dark shell surfaces were linked to a weight reduction in nuts and kernels and to an increase in darkened and mouldy kernels. Observations made in an untreated orchard for additional 3 years confirmed these trends. Baited Pherocon AM were effective in monitoring flies but catches on woody green spheres were better correlated with the first relevant oviposition phases. When pesticides were sprayed with the correct timing, i.e. against eggs or first instar larvae, infestation was kept to acceptable levels with a single application. Considering average yields, nuts prices and costs for insecticide use, 1–2 insecticide treatments are economically viable. Other Implications are discussed.  相似文献   

15.
Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland's cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an area-wide management programme for Helicoverpa spp. is discussed.  相似文献   

16.
Two watermelon pest management practices, a squash trap crop and a standard recommendation using soil-applied carbofuran, were compared using large-scale field plots to assess trap crop suitability as a replacement for the standard in 2000, 2001, and 2002. In both systems, foliar insecticide applications were used to control squash bugs when populations exceeded threshold levels. During 2001 and 2002, a treatment of untreated watermelon was used. Early season adult insects, from seedling to fruit set, are most critical for watermelon. Significantly fewer early adult bugs were found on watermelon in the trap crop than in the standard recommended practice in 1 of 3 yr. In both years, significantly fewer adult squash bugs were found in watermelon in the trap crop than in untreated fields. The standard recommended practice significantly reduced adult squash bugs in watermelon compared with the untreated in 1 of 2 yr. There was no significant correlation of watermelon yield and squash bug density, indicating that squash bug densities were too low to impact yield. Although squash bugs were reduced significantly by the trap crop, marketable watermelon yields were lower in the squash trap crop than in untreated watermelon, suggesting that pest management treatments may interfere with crop productivity factors other than squash bug colonization. Results suggest that mid-season production squash bug should be managed by monitoring populations and using insecticides as needed rather than using at-plant treatment. Further research is needed to compare treatments during early-season production.  相似文献   

17.
Abstract 1 The interplay between pest movement and trap crop physical design is modelled in a situation where the pest moves by a random walk with spatially variable mobility. Questions addressed are: (i) how does the proportion of trap crop area of the total field area influence the equilibrium distribution of pests among the crop and the trap crop and (ii) how do crop patch size and shape influence the speed of pest redistribution from the crop to the trap crop. 2 When pest mobility in the trap crop is clearly lower than that in the crop, the pest population in the crop decreases very sharply for small trap crop proportions. When mobility in the trap crop is slightly closer to that in the crop, the pest population in the crop decreases much more gradually with increasing trap crop proportion. Thus finding a trap crop that the pest distinctly prefers over the crop appears to be crucial for developing efficient trap crop systems. 3 The rate of decay in the pest population in the crop increases with increasing perimeter to area ratio of the crop patch. Hence, designing field layouts to increase the perimeter to area ratio of crop patches may be beneficial.  相似文献   

18.
天敌昆虫抗药性研究进展   总被引:3,自引:0,他引:3  
天敌昆虫抗药性研究在协调害虫化学防治和生物防治中有着重要的理论和现实意义,其研究的最终目的在于更好地推进抗性天敌在害虫综合治理(IPM)中的应用。抗药性天敌昆虫具有潜在的巨大价值。鉴于此,本文系统地综述了天敌昆虫抗药性最新研究进展,包括杀虫剂对天敌昆虫的影响、天敌昆虫抗药性现状、抗药性机理和限制天敌昆虫抗药性发展因素等。文章最后还对抗药性天敌昆虫的应用前景进行了展望。  相似文献   

19.
20.
After oviposition, females of the Mediterranean fruit fly Ceratitis capitata Wiedemann deposit a host-marking pheromone on the fruit surface that deters oviposition by conspecifics. Methanolic extracts of fruit fly faeces elicit a similar deterrent effect. The results of laboratory and field experiments using raw methanolic extracts of C. capitata faeces as an oviposition deterrent are reported. Laboratory bioassays revealed a significant positive relationship between concentration of faeces and the inhibition of oviposition responses by C. capitata. Treatment of halves of coffee bushes with methanolic extracts containing 0.1, 1.0 and 10 mg faeces ml(-1) resulted in a significant reduction of infestation only at the highest concentration (P=0.03). Treatment of blocks of coffee bushes with an extract of 10 mg faeces ml(-1) resulted in an 84% reduction in infestation by C. capitata in sprayed plants and a 56% reduction in adjacent untreated coffee bushes surrounding treated plots, probably due to the deterrent effect of host-marking pheromone on fly oviposition. We conclude that faeces contain oviposition deterrent substances that effectively reduce fruit infestations by C. capitata, suggesting a clear potential for the use of this infochemical in integrated management programmes targeted at this pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号