首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
杜习慧 《菌物研究》2019,17(4):240-251
黑色羊肚菌支系(Elata Clade)作为我国食用菌栽培行业近几年突飞猛进发展的一类真菌,隶属于羊肚菌属(Morchella),在国内备受关注,具有重要的经济和科研价值。本文从黑色羊肚菌支系的物种多样性、分布范围、种质资源、栽培应用、有性生殖、遗传多样性和分子标记等方面,对相关的研究成果进行了综述,总结了国内外研究中取得的主要成绩,为黑色羊肚菌支系的遗传研究、栽培驯化和菌种鉴定等方面提供理论支持和参考依据,并探讨了目前尚未清楚的问题及今后可能的解决对策。  相似文献   

2.
丛枝菌根真菌物种多样性研究进展   总被引:23,自引:1,他引:22  
丛枝菌根(arbuscular mycorrhiza, AM)真菌是生态系统中生物多样性的重要组分之一,具有十分丰富的物种多样性、遗传多样性和功能多样性.该真菌分类地位不断提高已上升至门,下设1个纲、4个目、13个科,19个属,现已报道214种.丛枝菌根对保持生态平衡、稳定和提高生态系统可持续生产力具有重要作用.本文分析了世界范围内丛枝菌根真菌物种多样性研究现状、不同生态系统中影响丛枝菌根真菌物种多样性的关键因子及其调控途径;认为分子生物学技术是今后丛枝菌根真菌物种多样性研究的主要方法.  相似文献   

3.
为探究羊肚菌Morchella与不同土壤生长环境及土壤理化因子的关系,以吉林省辽源市的野生和栽培两种生境为样地,采集羊肚菌根际土壤样品为材料,通过Illumina MiSeq高通量测序技术,对羊肚菌土壤真菌群落结构和多样性进行研究,同时分析土壤理化因子对其真菌群落多样性及优势菌属的影响。通过Alpha多样性分析发现:与对照组相比,不论是野生环境还是栽培环境,羊肚菌生长之后的土壤真菌的群落组成多样性降低;通过Beta多样性分析发现:两组根际土壤真菌组成差异非常明显,说明不同的羊肚菌生长环境对土壤真菌组成有重要影响,同时,野生羊肚菌根际土壤真菌优势菌属是被孢霉属Mortierella,栽培羊肚菌根际土壤真菌优势菌属是红菇属Russula。土壤冗余分析表明土壤理化指标中全氮(TN)、有机碳(OC)对土壤真菌群落多样性影响最大,野生羊肚菌根际土壤中的优势菌属被孢霉属与TN、OC 2种元素呈正相关,而栽培羊肚菌根际土壤中的优势菌属红菇属与Mg~(2+)、全磷(TP)、Ca~(2+)和K~+4种元素呈正相关。研究结果表明羊肚菌更喜欢生活在略偏碱的土壤环境。  相似文献   

4.
为了解羊肚菌(Morel)烂柄病的发生对土壤真菌群落结构的影响,采用Illumina MiSeq高通量测序技术,对健康羊肚菌根际土、烂柄病发病子实体根际土及相同环境下未栽培羊肚菌土壤的真菌群落结构进行研究。结果表明,测序样品共获得344 163条序列,归为7个真菌门。各样品真菌多样性分析结果表明,未栽培土壤真菌群落多样性较高,栽培羊肚菌根际土壤真菌多样性显著降低,烂柄病发生后土壤真菌多样性增加。群落结构分析表明,烂柄病根际优势真菌类群为拟青霉属(Paecilomyces)、木霉属(Trichoderma)、葡萄穗霉属(Stachybotrys)、枝顶孢属(Acremonium)、Paratritirachium、Zopfiella、被孢霉属(Mortierella)和柄孢壳属(Podospora)。烂柄病的发生改变了土壤真菌群落结构,促进了根际真菌的繁殖。为了解羊肚菌烂柄病的发生、传播机理及防治提供了参考。  相似文献   

5.
张丽燕  魏玉莲  李通 《生态学杂志》2016,27(12):3882-3888
2013年7—9月,以清原林场、老秃顶子国家级自然保护区和宽甸白石砬子自然保护区为研究区域,对辽东次生林中木腐菌的物种多样性及其分布特征进行了研究.经过野外调查,共采集和记录木腐菌1062份,经鉴定为92种,隶属于48个属;其中白石砬子国家级自然保护区木腐真菌物种最丰富,Shannon多样性指数为4.04.从物种的地理成分来看,辽东地区的木腐菌以世界性广布和北温带分布为主,具有明显的北温带特征.白腐真菌是该地区倒木的主要分解者;该地区的木腐菌主要生长在腐烂等级为2、3的倒木上,主要优势寄主为槭属倒木,有243份真菌采集于槭属倒木,占总数的23.2%.  相似文献   

6.
木腐真菌在森林生态系统中具有丰富的物种多样性, 并在倒木的降解过程中发挥重要的生态功能。针叶树是大小兴安岭森林生态系统的优势树种, 因此研究针叶树倒木木腐真菌物种多样性和影响其物种分布的相关环境因子有助于揭示大小兴安岭森林生态系统物质循环的机理。本研究收集了近16年对大小兴安岭地区冷杉属(Abies)、落叶松属(Larix)、云杉属(Picea)和松属(Pinus) 4类针叶树倒木上1,561份木腐真菌标本的采集信息, 统计了物种种类及其腐朽类型, 并选取具有代表性的地点开展木腐真菌群落多样性及其与环境因子的相关性分析。结果显示, 大小兴安岭针叶树倒木木腐真菌有166种, 隶属于70属, 其中白腐真菌有111种, 占所有种类的66.9%, 褐腐真菌为55种, 占所有种类的33.1%。在4类针叶树倒木上均能生长的真菌种类有19种, 占所有种类的11.5%, 其中柔丝干酪孔菌(Oligoporus sericeomollis)是各类倒木上木腐真菌群落中的优势种。大兴安岭地区落叶松属为优势寄主, 其倒木上生长的木腐真菌种类数和个体数在4类倒木中均为最高; 而小兴安岭地区松属倒木上木腐真菌种类数和个体数比其他3类倒木高, 是该地区的优势寄主。对6个代表性地区木腐真菌群落的研究显示, 有11种真菌在6个地区均有分布, 小兴安岭地区木腐真菌多样性普遍高于大兴安岭地区; 聚类分析显示树种比地理位置对木腐真菌物种分布的影响更大。  相似文献   

7.
木耳属研究进展   总被引:5,自引:5,他引:0  
吴芳  员瑗  刘鸿高  戴玉成 《菌物学报》2014,33(2):198-207
简要概述了木耳属真菌在物种资源、系统发育和主要栽培类群遗传多样性方面的研究现状及进展。目前木耳属研究存在的主要问题是对该属物种资源缺乏系统研究,不同种类间系统发育关系不清楚,重要栽培种类黑木耳野生种群遗传多样性尚未分析。今后该属研究的主要方向是对上述问题的解决。  相似文献   

8.
为明确北京地区大型真菌资源状况,以中国科学院菌物标本馆馆藏的京区标本和本研究组采自该地区的标本为材料,结合已报道的文献资料,经过对定名标本的物种名称进行系统整理,得到北京地区大型真菌记录867种,隶属于2门20目72科281属,其中食用菌294种,药用菌169种(包含食用兼药用菌69种),毒菌56种。在全部大型真菌中,蘑菇科Agaricaceae、多孔菌科Polyporaceae、口蘑科Tricholomataceae和红菇科Russulaceae等24科拥有的物种占总物种数量的77.28%,这些科在该地区占有主导地位;红菇属Russula、蘑菇属Agaricus和丝盖伞属Inocybe等50个属的物种占总物种数量的60.21%,具有相对优势。大型真菌区系分布分析的结果表明,北京地区已发现的大型真菌主要为世界广泛分布的属。物种丰富度分析表明采自门头沟区的大型真菌的标本数和物种丰度最高,最能代表北京地区大型真菌物种的多样性;其他地区采集的标本数量显著减少,而且物种数和物种丰度均明显降低;特别是城区和近郊地区,由于适宜栖息地的丧失,大型真菌更是少见。  相似文献   

9.
大型真菌具有重要的经济价值和生态意义,是生态系统不可缺少的重要组成部分。本研究于2018年7月-10月和2019年7月-10月采用踏查法对大别山鹞落坪自然保护区和天堂寨自然保护区、仙居县和溧水区的大型真菌多样性进行调查,共采集到600多份样本,结合形态特征和分子进行物种鉴定,参考大型真菌书籍进行鉴定。结果表明:大别山研究区共鉴定得到大型真菌84种,隶属5纲11目27科56属;仙居县研究区大型真菌共计87种,隶属6纲10目25科56属;溧水研究区大型真菌79种,隶属5纲10目22科38属。多孔菌科(Polyporaceae)和口蘑科(Tricholomataceae)是三个研究区的共有优势科。α-多样性指数分析得出,在不同的生境下,多样性是溧水研究区>仙居县研究区>大别山研究区。研究结果表明,大型真菌物种的丰度与海拔和纬度呈负相关,三个研究区的大型真菌物种不仅有一些北温带特征,也有一些泛热带成分,世界分布属和北温带分布属占当地属总数的大部分。  相似文献   

10.
由于受到气候变化、土地利用变化及环境污染等诸多因素的干扰, 真菌多样性受到不容忽视的威胁, 亟需得到保护。构建物种数据库是实现真菌多样性研究和保护的重要前提。近年来兴起的DNA条形码及metabarcoding技术能够在很大程度上弥补传统鉴定方法的缺陷, 可对真菌物种进行大规模、准确、快速、高效地鉴定。本文梳理了metabarcoding技术在真菌物种多样性评估、真菌多样性影响机制和真菌古生态重建等研究中的应用, 同时强调了metabarcoding技术用于真菌多样性研究尚处于初期阶段, 在构建有效参照数据库、优化实验流程以及升级生物信息学工具等方面仍需要进一步的完善。建议加强真菌分类学家、生态学家以及计算机工具研发工程师之间的合作, 共同解决metabarcoding技术在真菌多样性研究及应用中面临的问题, 为宏观尺度上真菌多样性保护提供更加科学的依据。  相似文献   

11.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

12.
中国AM真菌的生物多样性   总被引:8,自引:0,他引:8  
菌根是真菌与植物根系所建立的互惠共生体 ,其中以丛枝菌根在自然界中分布最广。AM真菌遍布各生态系统 ,不仅大量分布于农田和森林土壤 ,而且还广泛存在于多种逆境环境中。绝大多数的植物包括苔鲜、蕨类、裸子植物、被子植物都能被AM真菌侵染。我国的AM真菌研究始于 2 0世纪 80年代 ,迄今为止 ,已经对多种生态环境中多种寄主植物根围的AM真菌进行了调查研究 ,共报道了 7个属的 99种AM真菌。本文从物种多样性、生境多样性和寄主多样性等三个方面概括介绍了 2 0年来我国在AM真菌生物多样性研究中取得的进展 ,并探讨了未来的研究动向。  相似文献   

13.
球囊霉素相关土壤蛋白(glomalin-related soil protein, GRSP)在土壤物理结构调节和土壤碳库稳定性中发挥着重要作用,但植物多样性和优势种如何影响GRSP还缺乏系统性研究。本研究依托东北林业大学哈尔滨实验林场的72块样地, 对1 m深土壤剖面分5层采样, 测定土壤易提取球囊霉素(easily extractable GRSP, EEG)、总提取球囊霉素(total GRSP, TG)及土壤理化性质, 并同时计算植物多样性指数及优势种重要值(importance value, IV), 进一步通过相关分析和冗余排序分析判断影响GRSP的主要因素与贡献。结果表明: (1)在整个土壤剖面上均表现为TG和EEG与土壤有机碳(SOC)正相关, 在部分土层深度与全氮(total nitrogen, TN)和含水量(moisture content, MC)正相关, 而与电导率(electrical conductivity, EC)和pH值负相关。(2)部分土层TG和EEG与黑皮油松(Pinus tabuliformis var. mukdensis)、樟子松(P. sylvestris var. mongolica)、胡桃楸(Juglans mandshurica)、黄檗(Phellodendron amurense)、榆树(Ulmus pumila)优势种重要值显著相关, 表现为黑皮油松重要值越高, 而黄檗、榆树重要值越小, 越有利于EEG的积累, 并且伴随EEG-C/SOC (EEG中C占SOC比例)增加、EEG/TG增大; 群落中胡桃楸、黄檗、榆树更有利于TG积累, 黑皮油松、落叶松(Larix gmelinii)、樟子松不利于TG的积累。(3)植物Simpson指数、Shannon-Wiener指数、物种丰富度与EEG、TG、EEG/TG无显著相关性, 而与EEG-C/SOC、EEG-N/TN (EEG中N占TN的比例)、TG-C/SOC (TG中C占SOC比例)、TG-N/TN (TG中N占TN的比例)显著负相关; 土壤EEG/TG和EEG-N/TN与植物均匀度指数显著正相关, 在1 m土壤不同土层趋势类似。(4)方差分解分析表明: 生物因子对GRSP变化的解释率是20.2%, 土壤理化因子解释率为7.8%, 而生物因子中植物优势种重要值的解释率最大(16.4%), 而植物物种多样性指数解释率仅为0.4%。冗余排序发现常绿针叶树种(黑皮油松和樟子松)越多且阔叶树种越少时, GRSP含量和GRSP对土壤碳氮的贡献越高(P < 0.01), 其机制可能与树种菌根类型有关: 外生菌根树种重要值与TG显著负相关, 丛枝菌根树种重要值与TG显著正相关。本研究解析了植物物种多样性对GRSP含量的重要影响, 并强调未来土壤管理和评估可以通过调整优势物种而不是树种多样性来促进GRSP积累。  相似文献   

14.
我国北方农田土壤中AM真菌的多样性   总被引:15,自引:3,他引:12  
AM真菌是农业生态系中一类重要的土壤微生物,它在农田土壤中的发生和分布受多种环境因素的影响。为深入了解我国北方农田土壤中AM真菌的多样性规律,于2000年在河北、山东的农田土壤中采集有代表性的土样127个。通过进一步扩繁、纯化,从中分离出AM真菌5属22种,鉴定了20个种,包括一个国内新记录种沾屑球囊霉(Glomus spurcum)。分析AM真菌的多样性特点及其影响因素发现,农田土壤中以球囊霉属(Glomus)的频度最高,其次为无梗囊霉属(Acaulospora);优势种类为幼套球囊霉(Glomus etunicatum)和摩西球囊霉(Glomus mosseae).土壤速效磷含量、pH状况主要对孢子密度产生影响,对种群分布影响不大。宿主植物类型对AM真菌的侵染状况和多样性影响较大;比较玉米(Zea mays)、甘薯(Ipomoea batatas)根区AM真菌的种群组成后发现两者有所不同,但优势种一致.  相似文献   

15.
土壤真菌多样性研究进展   总被引:8,自引:0,他引:8  
土壤真菌具有重要的生态功能,是生态系统中的重要组成部分,既包含有益真菌,也包含病原真菌,它们共同构成了土壤真菌的多样性。土壤真菌的多样性及其群落结构组成是评价其所在生态系统健康稳定的重要指标之一。近年来不仅对土壤真菌多样性和群落结构特征方面进行研究,而且对其生物功能,如土壤真菌在生物防治、有害物质吸附和降解等方面也进行了研究和探索,研究结果体现了土壤真菌的应用潜质。文中对影响土壤真菌多样性的因素进行了分析,对土壤真菌多样性的研究进行了展望,以期对未来农业生产、环境保护和科学研究提供参考。  相似文献   

16.
姚青  朱红惠  王栋  李良秋 《生态学报》2006,26(7):2288-2293
AM真菌能够影响植物生态系统的群落结构.以亚热带草地生态系统为研究对象,调查了两块草地中优势种和从属种的菌根,并在盆栽试验中比较了优势种和从属种对AM真菌的土著菌种和外源菌种Glomus mosseae的生长反应、养分吸收.结果表明,两块草地各自的优势种藿香蓟和两耳草对土著菌种的菌根依赖性分别是41.5%和77.4%,远远高于从属种莎草和毛蓼(16.0%和7.9%);但是它们对Glomus mosseae的菌根依赖性有所变化,分别是79.6%、44.2%、74.1%和24.9%.这表明,土著菌种是优势种和从属种的形成机制之一,而外源菌种可能改变基于土著菌种而形成的植物群落结构.植株磷营养的分析结果表明,AM真菌对优势种和从属种生长的促进与对磷吸收的促进高度相关,表明AM真菌促进养分吸收是其影响植物群落结构的机制之一.  相似文献   

17.
泰山丛枝菌根真菌群落结构特征   总被引:13,自引:1,他引:12  
2007年对泰山植被根围内丛枝菌根(arbuscular mycorrhiza,AM)真菌群落组成、数量、分布及其与植物多样性的关系进行了研究。从泰山傲徕峰、黑龙潭库区等样地共分离出4属16种AM真菌:球囊霉属Glomus 9种、无梗囊霉属Acaulospora 4种、巨孢囊霉属Gigaspora 2种和盾巨孢囊霉属Scutellospora1种。其中,球囊霉属Glomus及聚球囊霉Glomus fasciculatum的孢子密度、相对多度、分布频度和重要值均最高,分别为泰山植被区根围内AM真菌优势属和优势种。各样地之间Sorenson相似系数在0.60和0.85之间。植被数量与孢子密度(r=0.80,p0.01)、植物种的丰富度与AM真菌种的丰富度(r=0.77,p0.01)以及与孢子密度(r=0.59,p0.01)均呈极显著正相关关系。研究结果表明植物多样性对于提高AM真菌多样性发挥极为重要的作用。  相似文献   

18.
Conservation of the vegetation, analysis of the knowledge of the diversity of fungi, new biological methods and estimates of the numbers of species of fungi that grow in Mexico are discussed. The great forest destruction that is occurring and the loss of fungal diversity in the country is seriously depleting total biodiversity, mainly in the tropics. Methods to establish the number of Mexican species of fungi are proposed based on an average of: (1) the numbers of fungal obligates of vascular plants and animals and of the saprobic species; (2) extrapolating the number of the British fungi to Mexico, taking the British mycota as the best known in the world; and (3) extrapolating to the country the number of species known to occur in the State of Veracruz (Mexico), the best known in the country. The average of these three calculations yields about 200 000 species of fungi for Mexico. Of these, only 3.5% are known, despite considerable progress having been made in the inventory of the country's fungi in the last 30 years. It is concluded that it is necessary to place more emphasis on alpha taxonomy, to train more specialists and to prepare monographs of several groups of fungi.  相似文献   

19.
Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types (p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号