首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
探讨不同秸秆还田量和氮肥量配施对辽西北半干旱区玉米田土壤CO2排放的影响,可为固碳减排和黑土地保护计划的实施提供理论支撑。本试验主区设置3个秸秆还田水平,分别为3000(S1)、6000(S2)和9000 kg·hm-2(S3,秸秆全量还田);副区设置3个氮肥施用水平,分别为105(N1)、210(N2,常规施氮量)和420 kg N·hm-2(N3),另设置不施氮肥不添加秸秆的对照处理(CK),共10个处理。采集定位试验4年后玉米田间土壤,通过培养试验,探究不同处理对玉米田土壤CO2排放的影响及CO2排放与土壤溶解性有机碳(DOC)和微生物生物量碳(MBC)的关系。结果表明: 秸秆还田和氮肥施用均会促进玉米田土壤CO2排放,并随秸秆还田量和施氮量的增加而显著增加,其中氮肥施用是促进玉米田土壤CO2排放的最主要因素;秸秆还田与氮肥配施通过促进微生物生物量增加并加剧DOC消耗来促进玉米田土壤CO2排放;MBC和DOC含量显著刺激玉米田土壤CO2排放,且主要受两者培养前期含量的影响。从保障秸秆还田培肥地力同时减少CO2排放的角度考虑,210 kg N·hm-2常规施氮量与6000 kg·hm-2秸秆还田配合施用(N2S2)是本试验条件下辽西北半干旱区最有潜力的田间施肥模式。  相似文献   

2.
凋落物输入可显著影响土壤有机碳(SOC)矿化速率,但添加不同化学性质叶凋落物对土壤有机碳矿化释放CO2及激发效应的影响及其机理仍不清楚。本研究将亚热带6种树种13C标记的叶凋落物添加至天然次生林0~10 cm原位土柱中,比较不同树种叶凋落物添加对土壤总CO2、外源凋落物和土壤来源CO2释放速率和累积量以及激发效应的影响,并量化叶凋落物化学性质与土壤CO2释放累积量、激发效应的相关关系。结果表明: 添加叶凋落物能够显著提高土壤总CO2和土壤来源CO2释放量,存在显著正激发效应,激发效应值为68%~128%。不同树种叶凋落物添加对土壤有机碳矿化和激发效应的影响存在显著差异。Pearson相关分析和逐步多元线性回归分析发现,凋落物来源CO2释放累积量与叶凋落物C、P和纤维素含量呈显著负相关,而土壤来源CO2释放量与叶凋落物C:N和木质素:N呈显著正相关。综上,不同化学性质的叶凋落物对土壤有机碳矿化和激发效应的影响存在异质性,在亚热带地区森林类型转变过程中营造具有高质量叶凋落物的人工林将有助于减少森林土壤碳损失。  相似文献   

3.
2011年6月—2012年6月,在浙江省临安市典型板栗林样地布置施肥试验,研究板栗林土壤CO2通量与环境因子的关系.试验设置不施肥(对照)、施无机肥、有机肥及有机无机混合肥(1/2无机肥 + 1/2有机肥)4个处理.利用静态箱法测定土壤CO2排放速率,以及土壤温度、含水量和水溶性有机碳(WSOC)含量.结果表明: 板栗林中土壤CO2排放呈现显著的季节性变化特征,最小值均出现在2月,最大值均出现在7、8月.施用无机肥、有机肥和有机无机混合肥的土壤年累积CO2通量比对照分别增加29.5%、47.0% 和50.7%.施用无机肥的土壤WSOC含量(105.1 mg·kg-1)显著高于对照(76.6 mg·kg-1),但明显低于有机肥(133.0 mg·kg-1)和混合肥处理(121.17 mg·kg-1).无机肥、有机肥和混合肥处理的土壤呼吸Q10值(1.75、1.49和1.57)均高于对照(1.47).土壤CO2排放速率与土壤5 cm温度、WSOC含量之间呈极显著正相关,但与土壤含水量没有明显的相关性.施肥导致土壤WSOC含量增加可能是板栗林地土壤CO2排放速率增加的原因之一.  相似文献   

4.
2011年6月-2012年6月,在浙江省临安市典型板栗林样地布置施肥试验,研究板栗林土壤CO2通量与环境因子的关系.试验设置不施肥(对照)、施无机肥、有机肥及有机无机混合肥(1/2无机肥 + 1/2有机肥)4个处理.利用静态箱法测定土壤CO2排放速率,以及土壤温度、含水量和水溶性有机碳(WSOC)含量.结果表明: 板栗林中土壤CO2排放呈现显著的季节性变化特征,最小值均出现在2月,最大值均出现在7、8月.施用无机肥、有机肥和有机无机混合肥的土壤年累积CO2通量比对照分别增加29.5%、47.0% 和50.7%.施用无机肥的土壤WSOC含量(105.1 mg·kg-1)显著高于对照(76.6 mg·kg-1),但明显低于有机肥(133.0 mg·kg-1)和混合肥处理(121.17 mg·kg-1).无机肥、有机肥和混合肥处理的土壤呼吸Q10值(1.75、1.49和1.57)均高于对照(1.47).土壤CO2排放速率与土壤5 cm温度、WSOC含量之间呈极显著正相关,但与土壤含水量没有明显的相关性.施肥导致土壤WSOC含量增加可能是板栗林地土壤CO2排放速率增加的原因之一.  相似文献   

5.
长期不同施肥对玉米根茬生物量及养分累积量的影响   总被引:2,自引:1,他引:1  
以黄土高原南部两个长期定位试验(分别开始于1990和2003年)为研究对象,探讨了不同肥料处理对玉米根茬生物产量和养分累积的影响.于2011年10月玉米收获后采集0~20 cm土层不同施肥处理玉米根茬.结果表明:与不施肥及偏施N、NK、PK化肥相比,氮磷配施(NP)、氮磷钾平衡施肥(NPK)、有机无机配施(M1NPK、M2NPK)及化肥配合秸秆(SNPK)处理均显著提高了玉米根茬干质量.根茬固碳量及氮、磷、钾养分累积量在NP、NPK、M1NPK、M2NPK、SNPK处理显著高于不施肥和偏施N、NK、PK化肥处理,其中以有机无机配施处理效果最好.与不施氮肥(N0)相比,施氮120 kg N·hm-2(N120)和240 kg N·hm-2(N240)处理根茬干质量分别提高38%和45%,高量氮肥对根茬增量效果不显著.施用氮肥也显著提高了根茬碳、氮、磷、钾累积量.根茬可溶性有机碳、可溶性总氮含量在NP、NPK、M1NPK、M2NPK、SNPK及N120和N240处理中较高.氮磷钾平衡施肥、有机无机配施以及秸秆还田处理降低了根茬的纤维素、木质素含量.根茬C/N、木质素/N在CK、PK、N0处理间显著高于其他施肥处理.因此,氮磷配施、氮磷钾平衡施肥、有机无机配施及秸秆还田处理能够促进玉米根生长,提高营养成分含量,有利于土壤培肥和固碳.  相似文献   

6.
植物凋落物碳输入显著影响陆地生态系统土壤CO2排放和有机碳(SOC)形成,然而,针对不同质地土壤添加不同化学结构外源碳去向依然不清楚。本研究将13C标记的葡萄糖、淀粉和纤维素添加至红壤和风沙土,比较2种质地土壤添加不同化学结构外源碳在土壤释放的CO2、SOC、可溶性有机碳(DOC)和微生物生物量碳(MBC)库的净累积量、回收率及贡献比例上的差异。结果表明: 添加外源有机碳显著提高了CO2、SOC、DOC和MBC的δ13C值,且随着外源有机碳化学结构复杂性的增加,CO2的δ13C峰值依次延迟出现;外源有机碳种类、土壤类型和培养时间均显著改变外源碳去向及其在各碳库的贡献比例;在风沙土中,外源有机碳更多被矿化为CO2,且CO2库的外源碳净累积量和回收率大小依次为葡萄糖>淀粉>纤维素;红壤添加外源碳转变为SOC的累积量和回收率显著高于风沙土,且红壤SOC库的外源碳净累积量和回收率大小顺序也为葡萄糖>淀粉>纤维素。可见,外源有机碳化学结构和土壤质地共同调控外源碳去向及累积贡献。  相似文献   

7.
依托FACE技术平台, 采用稳定13C同位素技术, 通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上, 研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响. 结果表明: 种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低, CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2, HN)与拔节、孕穗期(施氮量为150 kg·hm-2, LN)土壤排放CO2的δ13C值, 显著提高了孕穗、抽穗期的根际呼吸比例. 拔节至成熟期, 根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48%(HN)和21%~48%(LN), 在正常CO2浓度下为20%~36% (HN)和19%~32%(LN). 不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同, CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

8.
王战磊  李永夫  姜培坤  周国模  刘娟   《生态学杂志》2014,25(11):3152-3160
于2012年7月—2013年7月,在浙江省临安市典型板栗林样地采用静态箱-气相色谱法测定了施用竹叶生物质炭后板栗林土壤CO2排放速率及土壤温度、含水量、水溶性有机碳(WSOC)和微生物生物量碳(MBC)含量变化.结果表明: 板栗林土壤CO2排放通量呈现显著的季节性变化特征.在试验的第1个月中,生物质炭处理土壤CO2排放通量显著高于对照(无生物质炭),但之后无显著差异;生物质炭处理的土壤CO2通量年均值和年累积排放量与对照相比无显著差异.生物质炭处理土壤MBC含量年均值(362 mg·kg-1)显著高于对照(322 mg·kg-1),而土壤WSOC年均值无显著差异.土壤CO2排放通量与不同土层土壤温度之间均具有显著相关性;生物质炭处理的土壤呼吸温度敏感系数Q10值显著高于对照;土壤CO2排放通量与WSOC含量之间具有显著相关性,而与土壤含水量和MBC含量均无显著相关性.综上所述,施用竹叶生物质炭对板栗林土壤CO2年累积排放量无显著影响,但增加了土壤Q10值;土壤温度和WSOC含量是影响板栗林土壤CO2排放的主要因素.  相似文献   

9.
于2012年7月—2013年7月,在浙江省临安市典型板栗林样地采用静态箱-气相色谱法测定了施用竹叶生物质炭后板栗林土壤CO2排放速率及土壤温度、含水量、水溶性有机碳(WSOC)和微生物生物量碳(MBC)含量变化.结果表明: 板栗林土壤CO2排放通量呈现显著的季节性变化特征.在试验的第1个月中,生物质炭处理土壤CO2排放通量显著高于对照(无生物质炭),但之后无显著差异;生物质炭处理的土壤CO2通量年均值和年累积排放量与对照相比无显著差异.生物质炭处理土壤MBC含量年均值(362 mg·kg-1)显著高于对照(322 mg·kg-1),而土壤WSOC年均值无显著差异.土壤CO2排放通量与不同土层土壤温度之间均具有显著相关性;生物质炭处理的土壤呼吸温度敏感系数Q10值显著高于对照;土壤CO2排放通量与WSOC含量之间具有显著相关性,而与土壤含水量和MBC含量均无显著相关性.综上所述,施用竹叶生物质炭对板栗林土壤CO2年累积排放量无显著影响,但增加了土壤Q10值;土壤温度和WSOC含量是影响板栗林土壤CO2排放的主要因素.  相似文献   

10.
化肥减施增效有助于农业的可持续发展。本研究用等氮量生物炭替代化肥氮,设置0、10%、20%、30%、40%(CK,T1~T4) 5个替代比例,在水稻收获后采集土壤样品进行室内分析,研究氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响。结果表明: 氮肥减量配施生物炭均可显著提高土壤有机碳(SOC)含量,且与生物炭配施量呈正比。氮肥减施20%条件下,土壤微生物生物量碳(MBC)和易氧化碳(ROC)含量均最高,分别为293.68和250.00 mg·kg-1,土壤可溶性碳(DOC)含量最低。SOC矿化速率在培养的第3天达到最高,前期(第3~6天)迅速下降,中期(第6~18天)缓慢下降,后期(第18~30天)趋于稳定,矿化速率随时间的动态变化符合对数函数;SOC累积矿化量和累积矿化率分别为0.66~0.86 g·kg-1和2.9%~4.0%,均以T2处理最低。稻谷产量随氮肥减施比例的增加呈先增加后下降趋势,T2处理最高,比CK显著增加了13.4%。本试验条件下,化学氮肥减量20%配施适量生物炭(5 t·hm-2)可有效提高SOC、MBC、ROC含量和水稻产量,降低SOC累积矿化量和累积矿化率,增强土壤固碳能力,是贵州黄壤稻田土壤固碳培肥的较好选择。  相似文献   

11.
为了探究旱地土壤施入氮肥后的气态氮(N2O和N2)损失规律,本研究通过室内好氧培养试验(60 d,25 ℃,80%孔隙含水量),运用15N同位素示踪技术,研究了4个玉米地土壤(哈尔滨、沈阳、栾城、寿光)和2个设施菜地土壤(沈阳、寿光)在施入尿素后的氮转化、N2O和N2排放动态。试验中尿素添加量为167 mg N·kg-1,以模拟田间氮肥施用量200 kg N·hm-2。结果表明: 在4个玉米地土壤中,尿素施用60 d内N2O累积排放量为寿光(20 mg N·kg-1)>栾城(14 mg N·kg-1)>沈阳(5 mg N·kg-1)>哈尔滨(0.5 mg N·kg-1),N2累积排放量为栾城(176 mg N·kg-1)>沈阳(106 mg N·kg-1)>寿光(75 mg N·kg-1)>哈尔滨(12 mg N·kg-1);在2个设施菜地土壤中,寿光土壤N2O累积排放量(21 mg N·kg-1)是沈阳(2 mg N·kg-1)的10倍,而两个站点N2累积排放量分别为28和24 mg N·kg-1。不同土壤N2O排放占两种气体排放总量的5%~40%,其中寿光土壤(30%~40%)显著高于其他样地土壤(1%~10%)。在土壤排放的N2O和N2中,土壤氮库分别贡献了56%和61%,高于添加当季氮肥的贡献率。相关分析表明,N2O累积排放量与本底土壤pH呈正相关,说明土壤本底pH可能是调控不同旱地土壤N2O和N2排放的重要环境因子。在华北碱性土壤区,采用能降低土壤pH值的措施可能具有较好的气态氮减排效果。  相似文献   

12.
采用3因素2水平交互设计室内恒温培养试验,通过调控秸秆施用、氮肥用量及食细菌线虫,探讨三者对土壤微生物生物量碳氮(Cmic和Nmic)、可溶性碳氮(DOC、DON)、矿质氮(NH4+-N和NO3--N)及温室气体排放(CO2、N2O和CH4)的交互影响.结果表明: 施用秸秆显著增加了食细菌线虫数量、Cmic和Nmic,而随着氮肥用量增加,Cmic和Nmic降低,食细菌线虫对Cmic和Nmic的影响则依赖于秸秆和氮肥用量.秸秆、氮肥和食细菌线虫对可溶性碳氮和矿质氮表现出强烈的交互作用,其中秸秆和氮肥均增加了DOC、NH4+ -N和NO3--N;食细菌线虫对DOC的抑制作用和对矿质氮的促进作用达到显著水平.秸秆处理对CO2、N2O的促进及对CH4的抑制均达到显著水平,而线虫和氮肥的影响则更多表现出交互作用.在培养第56天,有秸秆时,低量氮肥下食细菌线虫显著促进了CO2的排放,而高量氮肥下则表现出对CO2和N2O显著的抑制作用.总之,土壤生态功能的发挥不可忽视土壤动物的作用.  相似文献   

13.
三江平原小叶章湿地碳排放对雪被变化的短期响应   总被引:1,自引:0,他引:1  
为了解三江平原小叶章湿地碳排放对雪被变化的响应,利用黑龙江省科学院自然与生态研究所三江平原湿地生态定位研究站内试验平台,采用静态箱-气相色谱法,分别对剔除雪被处理(0 cm)和添加雪被处理(50 cm)以及对照(20 cm)小叶章湿地进行了温室气体排放通量观测,并同步观测相关环境因子。结果表明:不同处理土壤温度、含水量及碳排放量均在覆雪期较低,并随时间呈逐渐升高趋势。随着时间推移和雪被厚度增加,土壤温度不断上升,处理间差异逐渐缩小;剔除雪被处理的土壤含水量始终低于对照和添加雪被处理;在融雪期和后融雪期,对照和添加雪被处理比剔除雪被处理更能促进土壤CO2排放;各时期土壤累积CH4排放量在不同处理间无显著性差异。土壤温度与累积CO2和CH4排放量均呈显著相关关系,随土壤温度的升高,土壤累积CO2排放量持续增加,土壤累积CH4排放量呈先减少后迅速增加趋势;土壤含水量与累积CO2和CH4排放量也呈显著相关关系,随土壤含水量的增加,土壤累积CO2排放量逐渐增多,达到一定值后趋于平缓,土壤累积CH4排放量则持续显著增加。  相似文献   

14.
为探讨不同加气灌溉施氮模式下设施甜瓜土壤CO2和N2O排放的动态变化规律及其与土壤温度、湿度的关系,本研究采用密闭静态箱-气相色谱法对加气灌溉不同施氮水平下土壤CO2和N2O排放进行监测,并分析了加气灌溉对不同施氮量下土壤CO2和N2O排放的影响.试验采用加气灌溉(AI)和不加气灌溉(CK)两种灌溉方式,施氮量设不施氮(N1)、传统施氮量的2/3(150 kg·hm-2,N2)和传统施氮量(225 kg·hm-2,N3)3个施氮水平.结果表明:加气灌溉土壤CO2和N2O排放量高于不加气灌溉处理,但是差异不显著;相同灌溉模式下,CO2和N2O排放量随施氮量的增加而显著增加,施氮量是土壤CO2和N2O排放的主要影响因素.加气灌溉条件下,不同施氮处理N2O排放通量与土壤温度和湿度呈显著正相关,CO2排放通量与土壤温度呈显著正相关.加气减氮处理在氮肥减少1/3的情况下,甜瓜产量提高了6.9%,温室气体排放引起的增温潜势值从9544.82 kg·hm-2下降到9340.72 kg·hm-2.综上,通过加气灌溉减少氮肥施用量来抑制农业生产系统中温室气体排放是可行的.  相似文献   

15.
为探讨不同加气灌溉施氮模式下设施甜瓜土壤CO2和N2O排放的动态变化规律及其与土壤温度、湿度的关系,本研究采用密闭静态箱-气相色谱法对加气灌溉不同施氮水平下土壤CO2和N2O排放进行监测,并分析了加气灌溉对不同施氮量下土壤CO2和N2O排放的影响.试验采用加气灌溉(AI)和不加气灌溉(CK)两种灌溉方式,施氮量设不施氮(N1)、传统施氮量的2/3(150 kg·hm-2,N2)和传统施氮量(225 kg·hm-2,N3)3个施氮水平.结果表明:加气灌溉土壤CO2和N2O排放量高于不加气灌溉处理,但是差异不显著;相同灌溉模式下,CO2和N2O排放量随施氮量的增加而显著增加,施氮量是土壤CO2和N2O排放的主要影响因素.加气灌溉条件下,不同施氮处理N2O排放通量与土壤温度和湿度呈显著正相关,CO2排放通量与土壤温度呈显著正相关.加气减氮处理在氮肥减少1/3的情况下,甜瓜产量提高了6.9%,温室气体排放引起的增温潜势值从9544.82 kg·hm-2下降到9340.72 kg·hm-2.综上,通过加气灌溉减少氮肥施用量来抑制农业生产系统中温室气体排放是可行的.  相似文献   

16.
不同氮肥对东北春玉米农田温室气体周年排放的影响   总被引:1,自引:0,他引:1  
为探明不同氮肥条件下高纬度农田土壤的温室气体排放特性,采用静态箱-气相色谱法研究了常规施氮(CN)、施用缓释肥(SLN)、尿素添加硝化抑制剂和脲酶抑制剂(NIUI)、不施氮肥(NN)对东北春玉米农田土壤温室气体排放的影响.结果表明: CN、SLN和NIUI处理产量分别为9618、9376和9645 kg·hm-2.与CN处理相比,SLN促进了玉米生长季土壤N2O的排放,降低了非生长季土壤N2O的排放;NIUI处理N2O累积排放量比CN降低了39.0%;各处理土壤CO2周年累积排放通量无显著差异;东北春玉米田是大气中CH4的弱汇,NIUI处理较CN促进了玉米生长季土壤对CH4的吸收.综上,尿素添加脲酶抑制剂和硝化抑制剂可以在实现玉米高产的同时有效减少土壤温室气体排放.  相似文献   

17.
通过恒温培养试验,研究了不同类型秸秆还田后的土壤CO2排放特征及其与秸秆C、N含量的关系,以明晰黑土区不同类型秸秆还田后的分解特征,探明还田秸秆的C、N含量对固碳效果的影响.结果表明: 在61 d的培养试验中,土壤CO2排放速率随时间呈现出“下降 稳定 增大(出现‘较高值’) 下降”的过程.不同类型秸秆还田后土壤CO2排放速率随时间变化的特征存在明显差异,主要体现在“较高值”出现和持续的时间不同.秸秆类型对土壤CO2累积排放量具有显著影响,前21 d和前61 d的土壤CO2累积排放量对秸秆添加的响应不同.在前21 d,玉米根、玉米茎下部、玉米叶、大豆叶的CO2累积排放量(约160 μmol·g-1)显著大于其他秸秆;而除大豆叶外,大豆秸秆61 d的CO2累积排放量均比玉米秸秆大.前21 d CO2累积排放量与秸秆含碳量的比值(CR)和秸秆的C/N、含氮量之间均呈显著的线性相关;而61 d的CO2累积排放量与秸秆的C、N含量之间不存在线性关系.综上,在还田条件下,秸秆类型对土壤CO2的排放有明显影响;大豆秸秆比玉米秸秆容易分解,但与长时间分解不同,大豆秸秆还田最初阶段的分解速率小于玉米秸秆;秸秆的C/N、含氮量只对还田最初阶段的土壤CO2排放有较大影响.  相似文献   

18.
通过恒温培养试验,研究了不同类型秸秆还田后的土壤CO2排放特征及其与秸秆C、N含量的关系,以明晰黑土区不同类型秸秆还田后的分解特征,探明还田秸秆的C、N含量对固碳效果的影响.结果表明: 在61 d的培养试验中,土壤CO2排放速率随时间呈现出“下降 稳定 增大(出现‘较高值’) 下降”的过程.不同类型秸秆还田后土壤CO2排放速率随时间变化的特征存在明显差异,主要体现在“较高值”出现和持续的时间不同.秸秆类型对土壤CO2累积排放量具有显著影响,前21 d和前61 d的土壤CO2累积排放量对秸秆添加的响应不同.在前21 d,玉米根、玉米茎下部、玉米叶、大豆叶的CO2累积排放量(约160 μmol·g-1)显著大于其他秸秆;而除大豆叶外,大豆秸秆61 d的CO2累积排放量均比玉米秸秆大.前21 d CO2累积排放量与秸秆含碳量的比值(CR)和秸秆的C/N、含氮量之间均呈显著的线性相关;而61 d的CO2累积排放量与秸秆的C、N含量之间不存在线性关系.综上,在还田条件下,秸秆类型对土壤CO2的排放有明显影响;大豆秸秆比玉米秸秆容易分解,但与长时间分解不同,大豆秸秆还田最初阶段的分解速率小于玉米秸秆;秸秆的C/N、含氮量只对还田最初阶段的土壤CO2排放有较大影响.  相似文献   

19.
中高纬度地区非生长季温室气体排放对生态系统碳、氮循环具有重要影响,但采伐干扰如何影响森林沼泽非生长季土壤温室气体排放尚不明确.本研究采用静态箱-气相色谱法,观测小兴安岭4种森林沼泽(毛赤杨沼泽、白桦沼泽、落叶松苔草沼泽、落叶松藓类沼泽)不同采伐方式下(对照、择伐45%、皆伐,试验处理已10年)非生长季土壤CO2、CH4、和N2O通量及其相关环境因子(温度、湿度及碳氮含量等),分析采伐干扰对温带森林沼泽非生长季土壤温室气体排放的影响规律及主控因子.结果表明: 采伐干扰10年后,4种森林沼泽土壤CO2、CH4和N2O非生长季平均通量分别在53.08~81.31 mg·m-2·h-1、0.09~3.07 mg·m-2·h-1和4.07~8.83 μg·m-2·h-1,其中,皆伐显著提高毛赤杨沼泽和落叶松藓类沼泽非生长季土壤CO2、CH4和N2O排放量,择伐显著提高白桦沼泽、落叶松藓类沼泽及降低毛赤杨沼泽的CO2排放量,且显著降低4种森林沼泽CH4排放量及落叶松苔草沼泽的N2O排放量;天然森林沼泽非生长季土壤CO2排放受土壤温度、有机碳含量及C/N调控,CH4受土壤温度、有机碳含量调控,N2O受气温、土壤pH调控,采伐增加了CO2排放与气温、土壤含水量及积雪深度的相关性,增加了CH4排放与气温、土壤含水量、C/N的相关性,增加了N2O排放与土壤全氮和C/N的相关性;温带天然森林沼泽非生长季土壤CO2、CH4和N2O的年贡献率分别为33.2%~46.5%、6.3%~9.1%和61.5%~68.3%,皆伐提高了白桦沼泽和落叶松藓类沼泽CO2年贡献率和除落叶松藓类沼泽外其他样地的N2O年贡献率,择伐提高了落叶松苔草沼泽、落叶松藓类沼泽CO2、CH4和N2O年贡献率,但降低了白桦沼泽3种气体年贡献率.温带天然森林沼泽非生长季土壤N2O和CO2的年贡献率相对较大,皆伐使两者年贡献率进一步提高,择伐却较大幅度提高了其CH4的年贡献率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号