首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Escherichia coli mutants defective in cheY and cheZ function are motile but generally nonchemotactic; cheY mutants have an extreme counterclockwise bias in flagellar rotation, whereas cheZ mutants have a clockwise rotational bias. Chemotactic pseudorevertants of cheY and cheZ mutants were isolated on semisolid agar and examined for second-site suppressors in other chemotaxis-related loci. Approximately 15% of the cheZ revertants and over 95% of the cheY revertants contained compensatory mutations in the flaA or flaB locus. When transferred to an otherwise wild-type background, most of these suppressor mutations resulted in a generally nonchemotactic phenotype: suppressors of cheY caused a clockwise rotational bias; suppressors of cheZ produced a counterclockwise rotational bias. Chemotactic double mutants containing a che and a fla mutation invariably exhibited flagellar rotation patterns in between the opposing extremes characteristic of the component mutations. This additive effect on flagellar rotation resulted in essentially wild-type swimming behavior and is probably the major basis of suppressor action. However, suppression effects were also allele specific, suggesting that the cheY and cheZ gene products interact directly with the flaA and flaB products. These interactions may be instrumental in establishing the unstimulated swimming pattern of E. coli.  相似文献   

2.
The flaAII gene of Salmonella typhimurium has also been termed motC and cheV, because defective alleles may give rise to a nonflagellate, paralyzed, or nonchemotactic phenotype. We isolated a temperature-sensitive motility mutant (MY1) and have found that the mutation occurs in the flaAII gene. In temperature-jump experiments, MY1 could be converted from highly motile to paralyzed within 0.5 s, demonstrating that flaAII is a structural gene whose product is immediately essential for motor rotation. The mutant, although chemotactic at permissive temperatures (less than 36 degrees C), had a higher clockwise rotational bias than did the wild type; it can therefore be regarded simultaneously as motC(Ts) and cheV (tumbly). The only previously reported S. typhimurium cheV mutant was smooth-swimming. A shift toward counterclockwise bias accompanied loss of rotational speed in the restrictive temperature range. This result, by analogy with known proton motive force effects on motor switching, further indicates a central role of the flaAII (motC, cheV) protein in the energy transduction and switching process. Since there is no evidence associating it with the isolable entity known as the basal body, it may reside at the cytoplasmic face of the flagellar motor.  相似文献   

3.
The flaAII.2, flaQ, and flaN genes of Salmonella typhimurium are important for assembly, rotation, and counterclockwise-clockwise switching of the flagellar motor. Paralyzed and nonchemotactic mutants were subjected to selection pressure for partial acquisition of motility and chemotaxis, and the suppressor mutations of the resulting pseudorevertants were mapped and isolated. Many of the intergenic suppressor mutations were in one of the other two genes. Others were in genes for cytoplasmic components of the chemotaxis system, notably cheY and cheZ; one of the mutations was found in the cheA gene and one in a motility gene, motB. Suppression among the three fla genes was allele specific, and many of the pseudorevertants were either cold sensitive or heat sensitive. We conclude that the FlaAII.2, FlaQ, and FlaN proteins form a complex which determines the rotational sense, either counterclockwise or clockwise, of the motor and also participates in the conversion of proton energy into mechanical work of rotation. This switch complex is probably mounted to the base of the flagellar basal body and, via binding of the CheY and CheZ proteins, receives sensory information and uses it to control flagellar operation.  相似文献   

4.
Three flagellar proteins, FliG, FliM, and FliN (FliGMN), are the components of the C ring of the flagellar motor. The genes encoding these proteins are multifunctional; they show three different phenotypes (Fla(-), Mot(-), and Che(-)), depending on the sites and types of mutations. Some of the Mot(-) mutants previously characterized are found to be motile. Reexamination of all Mot(-) mutants in fliGMN genes so far studied revealed that many of them are actually temperature sensitive (TS); that is, they are motile at 20 degrees C but nonmotile at 37 degrees C. There were two types of TS mutants: one caused a loss of function that was not reversed by a return to the permissive temperature (rigid TS), and the other caused a loss that was reversed (hyper-TS). The rigid TS mutants showed an all-or-none phenotype; that is, once a structure was formed, the structure and function were stable against temperature shifts. All of fliM and fliN and most of the fliG TS mutants belong to this group. On the other hand, the hyper-TS mutants (three of the fliG mutants) showed a temporal swimming/stop phenotype, responding to temporal temperature shifts when the structure was formed at a permissive temperature. Those hyper-TS mutation sites are localized in the C-terminal domain of the FliG molecules at sites that are different from the previously proposed functional sites. We discuss a role for this new region of FliG in the torque generation of the flagellar motor.  相似文献   

5.
The FliG protein is a central component of the bacterial flagellar motor. It is one of the first proteins added during assembly of the flagellar basal body, and there are 26 copies per motor. FliG interacts directly with the Mot protein complex of the stator to generate torque, and it is a crucial player in switching the direction of flagellar rotation from clockwise (CW) to counterclockwise and vice versa. A primarily helical linker joins the N-terminal assembly domain of FliG, which is firmly attached to the FliF protein of the MS ring of the basal body, to the motility domain that interacts with MotA/MotB. We report here the results of a mutagenic analysis focused on what has been called the hinge region of the linker. Residue substitutions in this region generate a diversity of phenotypes, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused. Isolation of these mutants was facilitated by a "sensitizing" mutation (E232G) outside of the hinge region that was accidentally introduced during cloning of the chromosomal fliG gene into our vector plasmid. This mutation partially interferes with flagellar assembly and accentuates the defects associated with mutations that by themselves have little phenotypic consequence. The effects of these mutations are analyzed in the context of a conformational-coupling model for motor switching and with respect to the structure of the C-terminal 70% of FliG from Thermotoga maritima.  相似文献   

6.
Coordination of flagella on filamentous cells of Escherichia coli.   总被引:12,自引:7,他引:5       下载免费PDF全文
Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range.  相似文献   

7.
The effect of CheY and fumarate on switching frequency and rotational bias of the bacterial flagellar motor was analyzed by computer-aided tracking of tethered Escherichia coli. Plots of cells overexpressing CheY in a gutted background showed a bell-shaped correlation curve of switching frequency and bias centering at about 50% clockwise rotation. Gutted cells (i.e., with cheA to cheZ deleted) with a low CheY level but a high cytoplasmic fumarate concentration displayed the same correlation of switching frequency and bias as cells overexpressing CheY at the wild-type fumarate level. Hence, a high fumarate level can phenotypically mimic CheY overexpression by simultaneously changing the switching frequency and the bias. A linear correlation of cytoplasmic fumarate concentration and clockwise rotation bias was found and predicts exclusively counterclockwise rotation without switching when fumarate is absent. This suggests that (i) fumarate is essential for clockwise rotation in vivo and (ii) any metabolically induced fluctuation of its cytoplasmic concentration will result in a transient change in bias and switching probability. A high fumarate level resulted in a dose-response curve linking bias and cytoplasmic CheY concentration that was offset but with a slope similar to that for a low fumarate level. It is concluded that fumarate and CheY act additively presumably at different reaction steps in the conformational transition of the switch complex from counterclockwise to clockwise motor rotation.  相似文献   

8.
FliG, FliM, and FliN are three proteins of Salmonella typhimurium that affect the rotation and switching of direction of the flagellar motor. An analysis of mutant alleles of FliM has been described recently (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992). We have now analyzed a large number of mutations in the fliG and fliN genes that are responsible for four different types of defects: failure to assembly flagella (nonflagellate phenotype), failure to rotate flagella (paralyzed phenotype), and failure to display normal chemotaxis as a result of an abnormally high bias to clockwise (CW) or counterclockwise (CCW) rotation (CW-bias and CCW-bias phenotypes, respectively). The null phenotype for fliG, caused by nonsense or frameshift mutations, was nonflagellate. However, a considerable part of the FliG amino acid sequence was not needed for flagellation, with several substantial in-frame deletions preventing motor rotation but not flagellar assembly. Missense mutations in fliG causing paralysis or abnormal switching occurred at a number of positions, almost all within the middle one-third of the gene. CW-bias and CCW-bias mutations tended to segregate into separate subclusters. The null phenotype of fliN is uncertain, since frameshift and nonsense mutations gave in some cases the nonflagellate phenotype and in other cases the paralyzed phenotype; in none of these cases was the phenotype a consequence of polar effects on downstream flagellar genes. Few positions in FliN were found to affect switching: only one gave rise to the CW mutant bias and only four gave rise to the CCW mutant bias. The different properties of the FliM, FliG, and FliN proteins with respect to the processes of assembly, rotation, and switching are discussed.  相似文献   

9.
Transducers are transmembrane receptor proteins that generate intracellular signals on stimulation and participate in adaptation by appropriate changes in the level of methylation. The transducer mutation trg-21 conferred a Trg- phenotype and defective taxis to galactose and ribose but a normal response to other attractants when present in a single chromosomal copy. Amplification of trg-21 by a multicopy plasmid made host cells generally nonchemotactic. The dominant phenotype resulted from a strong counterclockwise rotational bias of flagellar motors in Che- cells. Apparently, the Trg21 transducer sends a continuous counterclockwise signal to flagella independent of tactic stimulation. It appears that the cell has a homeostatic capacity that is sufficient to compensate for the effect of mutant transducers produced from a single chromosomal copy of trg-21, but the capacity is exceeded in cells that have multiple copies of the gene. The Trg21 protein did not have a significant effect on methylesterase activity, indicating that the two global effects of a stimulated transducer, that is, on flagellar rotation and on modification enzymes, can occur independently. The mutant protein exhibited essentially normal turnover of methyl groups but had a drastic defect in deamidation which thus reduced the number of methyl-accepting sites. The trg-21 mutation substitutes a threonine for Ala-419. This alanine is a conserved residue in all sequenced transducers and is in a region of the carboxy-terminal domain in which homology among the transducers is very high. The Trg21 phenotype implicates this conserved region in the generation of the excitatory signal which is directed at the flagella.  相似文献   

10.
The 5 to 10 peritrichously inserted complex flagella of Rhizobium meliloti MVII-1 were found to form right-handed flagellar bundles. Bacteria swam at speeds up to 60 microns/s, their random three-dimensional walk consisting of straight runs and quick directional changes (turns) without the vigorous angular motion (tumbling) seen in swimming Escherichia coli cells. Observations of R. meliloti cells tethered by a single flagellar filament revealed that flagellar rotation was exclusively clockwise, interrupted by very brief stops (shorter than 0.1 s), typically every 1 to 2 s. Swimming bacteria responded to chemotactic stimuli by extending their runs, and tethered bacteria responded by prolonged intervals of clockwise rotation. Moreover, the motility tracks of a generally nonchemotactic ("smooth") mutant consisted of long runs without sharp turns, and tethered mutant cells showed continuous clockwise rotation without detectable stops. These observations suggested that the runs of swimming cells correspond to clockwise flagellar rotation, and the turns correspond to the brief rotation stops. We propose that single rotating flagella (depending on their insertion point on the rod-shaped bacterial surface) can reorient a swimming cell whenever the majority of flagellar motors stop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号