首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Networks in leaf development   总被引:6,自引:0,他引:6  
Shoots are characterized by indeterminate growth resulting from divisions of undifferentiated cells in the central region of the shoot apical meristem. These cells give rise to peripheral derivatives from which lateral organ initials are recruited. During initial stages of cell recruitment, the three-dimensional form of lateral organs is specified. Lateral organs such as leaves develop and differentiate along proximodistal (base-to-tip), dorsoventral (top-to bottom) and mediolateral (middle-to-margin) planes. Current findings are refining our knowledge of the genes and genetic interactions that regulate these early processes and are providing a picture of how these pathways may contribute to variation in leaf form.  相似文献   

2.
Organ shape and size: a lesson from studies of leaf morphogenesis   总被引:1,自引:0,他引:1  
Control of the shape and size of indeterminate organs, such as roots and stems, is directly related to the control of the shape and size of the cells in these organs, as predicted by orthodox cell theory. For example, the polarity-dependent growth of leaf cells directly affects the polar expansion of leaves. Thus, the control of leaf shape is related to the control of the shape of cells within the leaf, as suggested by cell theory. By contrast, in determinate organs, such as leaves, the number of cells does not necessarily reflect organ shape or size. Genetic evidence shows that a compensatory system(s) is involved in leaf morphogenesis, and that an increase in cell volume can be triggered by a decrease in cell number and vice versa. Studies of chimeric leaves also suggest interaction between leaf cells that coordinates the behaviour of these cells at the organ level. Moreover, leaf size also appears to be coordinated at the whole-plant level. The recently hypothesised neo cell theory describes how leaf shape- and size-control mechanisms control leaf shape at the organ-level via cell-cell interaction.  相似文献   

3.
Tryptophan (Trp) is an essential amino acid required not only for protein synthesis but also for the production of many plant metabolites, including the hormone auxin. Mutations that disrupt Trp biosynthesis result in various developmental defects in plant organs, but how Trp affects organ growth and development remains unclear. Here, we identify an Arabidopsis mutant, small organ1 ( smo1/trp2-301 ), which exhibits a reduction in the size of its aerial organs as a result of the retardation of growth by cell expansion, rather than by the retardation of growth by cell proliferation. smo1/trp2-301 contains a lesion in TSB1 that encodes a predominantly expressed Trp synthase β-subunit, and is allelic with trp2 mutants. Further analyses show that in trp2 leaf cells, the nuclear endoreduplication is impaired and chloroplast development is delayed. Furthermore, cell expansion and leaf growth in trp2 can be restored by the exogenous application of Trp, but not by auxin, and the general protein synthesis is not apparently affected in trp2 mutants. Our findings suggest that the deficiency in Trp or its derivatives is a growth-limiting factor for cell expansion during plant organogenesis.  相似文献   

4.
5.
基于器官生物量构建植株形态的玉米虚拟模型   总被引:31,自引:0,他引:31  
探讨了基于玉米器官生物量模拟其形态的方法,并应用2000年田间试验数据提取了玉米节间、叶鞘和叶片的形态构建参数。基于玉米虚拟模型生物量分配模块模拟的器官生物量积累和建立的形态构建方法与提取的参数,模拟了2001年玉米不同生长阶段的器官形态,模拟结果与田间试验数据吻合较好。应用本模型实现了玉米生长过程中植株各个器官形态变化以及植株高度、叶面积动态的模拟,并实现了植株形态的可视化。  相似文献   

6.
Plants in the genus Asparagus have determinate leaf-like organs called cladodes in the position of leaf axils. Because of their leaf-like morphology, axillary position, and morphological variation, it has been unclear how this unusual organ has evolved and diversified. In the previous study, we have shown that cladodes in the genus Asparagus are modified axillary shoots and proposed a model that cladodes have arisen by co-option and deployment of genetic regulatory circuit (GRC) involved in leaf development. Moreover, we proposed that the alteration of the expression pattern of genes involved in establishment of adaxial/abaxial polarity has led to the morphological diversification from leaf-like to rod-like form of cladodes in the genus. Thus, these results indicated that the co-option and alteration of pre-existing GRC play an important role in acquisition and subsequent morphological diversification.Here, we present data of further expression analysis of A. asparagoides. The results suggested that only a part of the GRC involved in leaf development appears to have been co-opted into cladode development. Based on our study and several examples of the morphological diversification, we briefly discuss the importance of co-option of pre-existing GRC and its genetic modularity in the morphological diversity of plants during evolution.  相似文献   

7.
Phylloclade development in the Asparagaceae: an example of homoeosis   总被引:1,自引:0,他引:1  
Phylloclades are traditionally defined as flattened, determinate, leaf-like stems primarily on the basis of their axillary position. However, because the literature is replete with controversy over the morphological interpretation of these organs, a study of phylloclade development in comparison with leaf and stem development was undertaken in four closely related species of the Asparagaceae: Ruscus aculeatus, Danae racemosa, Semele androgyna and Asparagus densiflorus. Results reveal a continuum in phylloclade development from very leaf-like forms, such as those of Danae , via the more intermediate types of Ruscus , to the gradually more shootlike forms of Semele and Asparagus. This continuum results from a differential expression of stem (or shoot) and leaf characteristics in an axillary position. When stem (or shoot) and leaf features are combined, as in the fertile phylloclade of Ruscus , an intermediate organ is formed. Phylloclades are a form of evolutionary novelty that exemplifies the phenomenon of homoeosis, which is the transference of features from one organ to another. Developmentally, this means that leaf features are expressed by the axillary meristem.  相似文献   

8.
9.
Different epithelial organs form as a result of epithelial-mesenchymal interactions and share a common theme modulated by variations (Chuong ed. In Molecular Basis of Epithelial Appendage Morphogenesis, 1998). One of the major modulators is the sex hormone pathway that acts on the prototype signaling pathway to alter organ phenotypes. Here, we focus on how the sex hormone pathway may interface with epithelia morphogenesis-related signaling pathways. We first survey these sex hormone-regulated morphogenetic processes in various epithelial organs. Sexual dimorphism of hairs and feathers has implications in sexual selection. Diseases of these pathways result in androgenic alopecia, hirsutism, henny feathering, etc. The growth and development of mammary glands, prostate glands, and external genitalia essential for reproductive function are also dependent on sex hormones. Diseases affecting these organs include congenital anomalies and hormone-dependent breast and prostate cancers. To study the role of sex hormones in new growth in the context of system biology/pathology, an in vivo model in which organ formation starts from stem cells is essential. With recent developments (Yu et al. (2002) The morphogenesis of feathers. Nature 420:308-312), the growth of tail feathers in roosters and hens has become a testable model in which experimental manipulations are possible. We show exemplary data of differences in their growth rate, proliferative cell population, and signaling molecule expression. Working hypotheses are proposed on how the sex hormone pathways may interact with growth pathways. It is now possible to test these hypotheses using the chicken model to learn fundamental mechanisms on how sex hormones affect organogenesis, epithelial organ cycling, and growth-related tumorigenesis.  相似文献   

10.
器官形状和大小的控制是一个基本的发育生物学过程, 受细胞分裂和细胞扩展的影响。到目前为止, 人们对植物器官形状和大小的调控机制知之甚少。本实验室前期研究发现了一个种子和器官大小的调控基因DA1, 其编码一个泛素受体。在拟南芥(Arabidopsis thaliana)中, DA1通过抑制细胞的分裂来限制种子和器官的大小。本研究通过激活标签的方法在da1-1突变体背景下筛选到一个叶子形状发生改变的半显性突变体(yuan1-1D)。yuan1-1D形成短而圆的叶片和短的叶柄, 细胞学分析显示, 叶片和叶柄变短的主要原因是细胞的长向扩展降低导致的。YUAN1编码一个含有PHD锌指结构域的蛋白。GFP-YUAN1融合蛋白定位在细胞核内。过量表达YUAN1基因导致叶片和叶柄变短。遗传学分析显示, YUAN1和DA1、ROT3以及ROT4在控制叶片形状和大小方面作用于不同的遗传途径中。因此, 本研究鉴定了一个新的控制器官形状和大小的基因YUAN1, 为阐明植物器官形状和大小调控的分子机制提供了重要线索。  相似文献   

11.
12.
Interdependent development of blood vessels and organs   总被引:4,自引:0,他引:4  
The cardiovascular system is the first functional organ in the vertebrate embryo, and many organs start to develop adjacent to cells of the cardiovascular system. Endothelial cells (EC) form the inner cell lining of blood vessels and represent the major cell type that interacts with developing organs. On the one hand, EC provide organs with signals. These signals determine the location, differentiation and morphology of an organ. On the other hand, EC receive signals from the organ-specific cell types. Such signals give EC organ-specific features that the organ needs to interact with the circulatory system. This review provides the reader with specific examples of an interdependent development of organs and blood vessels.Eckhard Lammert and Ganka Nikolova were supported by the Deutsche Forschungsgemeinschaft DFG (La1216/2–1)  相似文献   

13.
14.
Plant organs grow to characteristic sizes that are genetically controlled. In animals, signaling by mobile growth factors is thought to be an effective mechanism for measuring primordium size, yet how plants gauge organ size is unclear. Here, we identify the Arabidopsis cytochrome P450 KLUH (KLU)/CYP78A5 as a stimulator of plant organ growth. While klu loss-of-function mutants form smaller organs because of a premature arrest of cell proliferation, KLU overexpression leads to larger organs with more cells. KLU promotes organ growth in a non-cell-autonomous manner, yet it does not appear to modulate the levels of known phytohormones. We therefore propose that KLU is involved in generating a mobile growth signal distinct from the classical phytohormones. The expression dynamics of KLU suggest a model of how the arrest of cell proliferation is coupled to the attainment of a certain primordium size, implying a common principle of size measurement in plants and animals.  相似文献   

15.
Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development.  相似文献   

16.
Phylloclades are traditionally defined as flattened, determinate, leaf-like stems primarily on the basis of their axillary position. However, because the literature is replete with controversy over the morphological interpretation of these organs, a study of phylloclade development in comparison with leaf and stem development was undertaken in four closely related species of the Asparagaceae: Ruscus aculeatus, Danae racemosa, Semele androgyna and Asparagus densiflorus. Results reveal a continuum in phylloclade development from very leaf-like forms, such as those of Danae, via the more intermediate types of Ruscus, to the gradually more shootlike forms of Semele and Asparagus. This continuum results from a differential expression of stem (or shoot) and leaf characteristics in an axillary position. When stem (or shoot) and leaf features are combined, as in the fertile phylloclade of Ruscus, an intermediate organ is formed. Phylloclades are a form of evolutionary novelty that exemplifies the phenomenon of homoeosis, which is the transference of features from one organ to another. Developmentally, this means that leaf features are expressed by the axillary meristem.  相似文献   

17.
Evolution of leaf developmental mechanisms   总被引:1,自引:0,他引:1  
Leaves are determinate organs produced by the shoot apical meristem. Land plants demonstrate a large range of variation in leaf form. Here we discuss evolution of leaf form in the context of our current understanding of leaf development, as this has emerged from molecular genetic studies in model organisms. We also discuss specific examples where parallel studies of development in different species have helped understanding how diversification of leaf form may occur in nature.  相似文献   

18.
Xu L  Xu Y  Dong A  Sun Y  Pi L  Xu Y  Huang H 《Development (Cambridge, England)》2003,130(17):4097-4107
The shoot apical meristem (SAM) of seed plants is the site at which lateral organs are formed. Once organ primordia initiate from the SAM, they establish polarity along the adaxial-abaxial, proximodistal and mediolateral axes. Among these three axes, the adaxial-abaxial polarity is of primary importance in leaf patterning. In leaf development, once the adaxial-abaxial axis is established within leaf primordia, it provides cues for proper lamina growth and asymmetric development. It was reported previously that the Arabidopsis ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) genes are two key regulators of leaf polarity. In this work, we demonstrate a new function of the AS1 and AS2 genes in the establishment of adaxial-abaxial polarity by analyzing as1 and as2 alleles in the Landsberg erecta (Ler) genetic background. We provide genetic evidence that the Arabidopsis ERECTA (ER) gene is involved in the AS1-AS2 pathway to promote leaf adaxial fate. In addition, we show that AS1 and AS2 bind to each other, suggesting that AS1 and AS2 may form a complex that regulates the establishment of leaf polarity. We also report the effects on leaf polarity of overexpression of the AS1 or AS2 genes under the control of the cauliflower mosaic virus (CAMV) 35S promoter. Although plants with as1 and as2 mutations have very similar phenotypes, 35S::AS1/Ler and 35S::AS2/Ler transgenic plants showed dramatically different morphologies. A possible model of the AS1, AS2 and ER action in leaf polarity formation is discussed.  相似文献   

19.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号