首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host.  相似文献   

5.
6.
Sporocysts of Schistosoma mansoni (PR1 strain) survive and grow in Biomphalaria glabrata PR albino strain snails, whereas they are encapsulated and die in B. glabrata 10R2 strain snails. These processes also occur in an in vitro system in which the only living cells are those of sporocysts and snail hemolymph. Hemocytes of the susceptible snail are normally not effective in damaging sporocysts. However, when the encounter occurred in the presence of cell-free plasma from resistant snails, previously impotent hemocytes severely damaged sporocysts in 24 hr. The cytotoxic capacity of resistant strain hemocytes was not altered by plasma from susceptible snails. Furthermore, it was retained even when plasma was replaced by culture medium free of snail components. The nature of the plasma factor(s) which facilitated damage by otherwise impotent hemocytes is discussed, and evidence is evaluated for the hypothesis that snail resistance is dependent upon the specificity of cytophilic factors present both in the plasma and on the hemocyte plasma membranes.  相似文献   

7.
Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host’s nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.  相似文献   

8.
The egg-laying rate, number of egg masses, number of eggs/mass, number of eggs hatched/snail and egg viability of Biomphalaria glabrata exposed to different doses (5 and 50) of Echinostoma paraensei miracidia were analyzed as indicators of reproductive activity. Polystyrene plates were placed in aquariums containing the snails and every other day for four weeks after infection the plates were removed to count the number of egg masses and eggs laid. After this, the plates were numbered individually and placed in new aquariums free of snails and the egg masses were observed daily to determine the hatching rate. On average there was an increase in the parameters evaluated in the infected snails in relation to the controls (uninfected snails), except for egg viability, which was significantly lower in the groups infected with 50 miracidia. These findings indicate that when infected, this host snail is able to increase its reproductive activity, suggesting an ecological strategy to maintain the species.  相似文献   

9.
Ultraviolet B (UVB, 280-315 nm) radiation is detrimental to both of larvae of the digenetic trematode Schistosoma mansoni and its snail intermediate host, Biomphalaria glabrata. We explored effects of UVB on three aspects of the interaction between host and parasite: survival of infected snails, innate susceptibility and resistance of snails to infection, and acquired resistance induced by irradiated miracidia. Snails infected for 1 week showed significantly lower survival than uninfected snails following irradiation with a range of UVB intensities. In contrast to known immunomodulatory effects in vertebrates, an effect of UVB on susceptibility or resistance of snails to infection could not be conclusively demonstrated. Finally, exposure of susceptible snails to UVB-irradiated miracidia failed to induce resistance to a subsequent challenge with nonirradiated miracidia, a result similar to that reported previously with ionizing radiation.  相似文献   

10.
For parasites that require multiple hosts to complete their development, the interaction with the intermediate host may have an impact on parasite transmission and development in the definitive host. The human parasite Schistosoma mansoni needs two different hosts to complete its life cycle: the freshwater snail Biomphalaria glabrata (in South America) as intermediate host and a human or rodents as final host. To investigate the influence of the host environment on life history traits in the absence of selection, we performed experimental infections of two B. glabrata strains of different geographic origin with the same clonal population of S. mansoni. One B. glabrata strain is the sympatric host and the other one the allopatric host. We measured prevalence in the snail, the cercarial infectivity, sex-ratio, immunopathology in the final host and microsatellite frequencies of individual larvae in three successive generations.  相似文献   

11.
Cattle demonstrate divergent and heritable phenotypes of resistance and susceptibility to infestation with the cattle tick Rhipicephalus (Boophilus) microplus. Bos indicus cattle are generally more resistant to tick infestation than Bos taurus breeds although large variations in resistance can occur within subspecies and within breed. Increased tick resistance has been previously associated with an intense hypersensitivity response in B. taurus breeds; however, the mechanism by which highly resistant B. indicus cattle acquire and sustain high levels of tick resistance remains to be elucidated. Using the commercially available Affymetrix microarray gene expression platform, together with histological examination of the larval attachment site, this study aimed to describe those processes responsible for high levels of tick resistance in Brahman (B. indicus) cattle that differ from those in low-resistance Holstein-Friesian (B. taurus) cattle. We found that genes involved in inflammatory processes and immune responsiveness to infestation by ticks, although up-regulated in tick-infested Holstein-Friesian cattle, were not up-regulated in Brahman cattle. In contrast, genes encoding constituents of the extracellular matrix were up-regulated in Brahmans. Furthermore, the susceptible Holstein-Friesian animals displayed a much greater cellular inflammatory response at the site of larval R. microplus attachment compared with the tick-resistant Brahman cattle.  相似文献   

12.
A sensitive hemagglutination assay utilizing glutaraldehyde-fixed trypsinized calf erythrocytes (GTC) is described to test for agglutinin levels in hemolymph and albumen gland extracts from nine populations of Biomphalaria glabrata, and from B. straminea and B. obstructa. High levels of GTC-reactive hemagglutinin were found in all snail populations. There was no correlation between hemagglutinin titer and innate resistance of B. glabrata strains to Schistosoma mansoni. However, an increase in hemagglutinin titer occurs in B. glabrata M-RLc snails infected with Echinostoma lindoense and in snails sensitized and reexposed to this parasite.  相似文献   

13.
Two strains of Biomphalaria glabrata were studied with respect to the effects of ionizing radiation on their susceptibility to Schistosoma mansoni infection. Gamma radiation at levels of 3.5 and 5 krad did not induce susceptibility in the resistant S-3 strain, but was found to initiate resistance in the susceptible PR-1 strain. In an attempt to understand the induced resistance in irradiated snails, histopathologic examinations and analyses of snail hemolymph were performed. Results indicated that miracidia invading irradiated snails were quickly surrounded and encapsulated by amoebocytes. Similarly, alterations in the hemolymph of irradiated snails suggested that radiation induced aging. It is suggested that radiation-altered snails may be of value in studying the defense mechanisms of these organisms.  相似文献   

14.
15.
16.
The co-evolution between hosts and parasites involves huge reciprocal selective pressures on both protagonists. However, relatively few reports have evaluated the impact of these reciprocal pressures on the molecular determinants at the core of the relevant interaction, such as the factors influencing parasitic virulence and host resistance. Here, we address this question in a host-parasite model that allows co-evolution to be monitored in the field: the interaction between the mollusc, Biomphalaria glabrata, and its trematode parasite, Schistosoma mansoni. Reactive oxygen species (ROS) produced by the haemocytes of B. glabrata are known to play a crucial role in killing S. mansoni. Therefore, the parasite must defend itself against oxidative damage caused by ROS using ROS scavengers in order to survive. In this context, ROS and ROS scavengers are involved in a co-evolutionary arms race, and their respective production levels by sympatric host and parasite could be expected to be closely related. Here, we test this hypothesis by comparing host oxidant and parasite antioxidant capabilities between two S. mansoni/B. glabrata populations that have co-evolved independently. As expected, our findings show a clear link between the oxidant and antioxidant levels, presumably resulting from sympatric co-evolution. We believe this work provides the first supporting evidence of the Red Queen Hypothesis of reciprocal evolution for functional traits at the field-level in a model involving a host and a eukaryotic parasite.  相似文献   

17.
The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4 days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon’s defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed.  相似文献   

18.
19.
20.
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号