首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meadow spittlebugs Philaenus spumarius and P. tesselatus are closely related taxa with uncertain taxonomic position in the light of previous morphological, ecological, cytological and molecular research. Despite morphological homogeneity of P. spumarius (with the exception of high colour and pattern polymorphism) across its wide Holarctic range, it is possible that additional taxa (species or subspecies) exist. Philaenus spumarius is a potentially important pest in parts of its range where it was introduced. We used DNA markers to describe the genetic diversity of P. spumarius and P. tesselatus and to verify the taxonomic status of P. tesselatus and remote populations of the former species. The mitochondrial (cytochrome B) data showed that there are two main groups encompassing a northeastern (Asia and north‐central Europe) and a southwestern (Mediterranean area and western Europe, including North American specimens) clade. According to the elongation factor‐1α gene, there are three main clades: northeastern (Eurasiatic clade, E1), southeastern (east Mediterranean – Caucasus clade, E2) and southwestern (Iberian clade, E3). These two or three mitochondrial and nuclear clades could be considered as separate taxonomic units. On the other hand, all studied individuals of both species possessed the same internal transcribed spacer 2 haplotype. American specimens most probably originated from some western European populations. All studied specimens of P. tesselatus belong to the southwestern clade and western Mediterranean cluster. Therefore, together with cytological data, its species status is doubtful. To definitively solve the taxonomic status of P. tesselatus and populations of P. spumarius, further research using more samples and more genetic markers are needed.  相似文献   

2.
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short‐lived and wind‐dispersed grass species, highly specialised on scattered and disturbance‐dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post‐glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance‐driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation‐by‐distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re‐colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re–)colonisation histories and range centre–margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre–periphery gradients.  相似文献   

3.
殷斯  郝转  陆飞东  高永 《广西植物》2023,43(11):2042-2054
研究野生作物资源的遗传变异及分化机制对种质资源的收集与改良具有重要意义。魔芋是我国西南地区的特色经济作物,但由于受到人为活动干扰,野生种群不断衰退。为评估西南地区魔芋属(Amorphophallus)野生群体的遗传多样性,探究代表性物种的系统发育地位,该研究利用3个叶绿体DNA(cpDNA)片段,分析了魔芋6个物种的遗传多样性,重建了种间系统发育关系。结果表明:(1)西南地区野生魔芋群体的遗传多样性普遍较低,虽然单倍型多样性(Hd)均值为0.428,但近一半群体只有1个单倍型,6个物种整体水平上的单倍型多样性在0.704到0.983之间。(2)在6个物种间检测到高水平的遗传分化,遗传分化系数(FST)值在0.481到0.967之间。(3)系统发育分析表明,选取的27个魔芋种主要聚成3个分支:非洲分支、东南亚分支和东亚大陆分支。疣柄魔芋(A. paeoniifolius)隶属于东南亚分支,而东亚大陆分支A包含花魔芋(A. konjac)和西盟魔芋(A. krausei),东亚大陆分支B由东亚魔芋(A. kiusianus)、滇魔芋(A. yunnanensis)和东京魔芋(A. tonkinensis)构成。生境隔离与人为干扰造成了西南地区野生魔芋群体较低的遗传多样性,魔芋属东亚大陆分支的分化可能与早期的快速扩张和生态适应有关。该研究为西南地区魔芋资源的合理保护、可持续利用和杂交育种提供了参考资料。  相似文献   

4.
The Tehuantepec jackrabbit (Lepus flavigularis) is an endangered species restricted to a small area in the Isthmus of Tehuantepec, Oaxaca, Mexico. To evaluate its phylogeographic structure, population genetics, and demographic history we sequenced the mitochondrial Control Region hypervariable domain (CR-1) for 42 individuals representing the entire species range. Phylogenetic patterns indicated that this species is subdivided into two highly divergent clades, with an average nucleotide genetic distance of 3.7% (TrN) between them. Clades A and B are geographically distributed in non-overlapping areas to the west and to the east of the Isthmus of Tehuantepec, respectively. Genetic diversity indices showed reduced genetic variability in L. flavigularis when compared to other species of Lepus within main clades and within populations. This low genetic diversity coupled with the restricted distribution to very small areas of occurrence and limited gene flow suggest that genetic drift has played an important role in the evolution of this species. Historical demographic analysis also pointed out that these two clades underwent a recent population expansion that started about 9,000 years ago for clade A and 3,200 years ago for clade B during the Holocene. Consequently, from the conservation perspective our results suggest that populations included in clades A and B should be regarded as distinct evolutionary lineages.  相似文献   

5.
Aim There are currently few population genetic studies on widely distributed SE Asian terrestrial organisms. We have studied the genetic diversification pattern of the giant wood spider, Nephila pilipes (Araneae: Tetragnathidae) to see whether fluctuations in rain forest extents generated by Quaternary climatic changes left signatures on populations of this agile terrestrial arthropod. Location The collecting localities were distributed in the following seven regions: (1) N Australia; (2) India (Calcutta, Karziranga and Sukna); (3) SE Asia (N Vietnam, Malaysia, Singapore and Bali); (4) SE China (Fujian, Guandong, Hong Kong and Hainan); (5) SW China (Guangxi and Yunnan); (6) E Asian islands (Ryukyu islands and Taiwan); and (7) the Philippine Islands. Methods A total of 374 specimens were collected from the East Asian continent and islands, SE Asia, India, and northern Australia. Mitochondrial cytochrome oxidase I gene partial sequences were used as the molecular marker to infer the phylogeographic diversification patterns. Results From the specimens collected, 67 haplotypes were identified, which could be grouped into five major clades. The dominant clade contained populations in regions ranging from Okinawa to Bali (spanning a distance of more than 4000 km), but their genetic variations were not structured and were not significantly associated with geographical distances. Three clades contained specimens collected from peripheral regions of the distribution range of N. pilipes, such as India, N Australia, and NE Asia. Members of the clade distributed in NE Asia were sympatric but those of the clades distributed in Australia and India were allopatric with those of the dominant clade. Main conclusions The results of this study indicate that, during Quaternary glacial periods, the rain forests in SE Asia might have been more or less continuous and thus generated an unstructured genetic diversification pattern of N. pilipes inhabiting this region. However, during such periods, populations in peripheral regions such as India, N Australia and NE Asia might have been isolated in refugia, thus accounting for the observed genetic divergence from populations in the SE Asian region.  相似文献   

6.
This study aims to investigate the species diversity of rodents living in karst ecosystems of Thailand. A survey has been conducted throughout Thailand, 122 karsts sampled and 477 Murinae rodents live-trapped. Phylogenetic reconstructions were carried out using two mitochondrial markers (cytb, COI). A sequence-based species delimitation method completed by the analysis of the level of genetic divergence was then applied to define species boundaries within our dataset. The phylogenetic position of Niviventer hinpoon was also investigated and sequences obtained from the holotype specimen of this species were used to reliably identify samples of N. hinpoon. A total of 12 described Murinae species, corresponding to 17 deeply divergent genetic lineages, were encountered in limestone karsts of Thailand. Our study revealed an important genetic diversity within the traditionally recognized species Maxomys surifer (four highly divergent genetic lineages), Leopoldamys neilli (two highly divergent genetic lineages) and Berylmys bowersi (two highly divergent genetic lineages). These species could be considered as species complex and require further taxonomic work. This study also provides valuable information on the distribution of the two rodent species endemic to limestone karsts of Thailand, L. neilli and N. hinpoon. Leopoldamys neilli was the most abundant species encountered in Thai karsts during our survey. However, L. neilli specimens from western Thailand are genetically highly divergent from the remaining populations of L. neilli and could represent a separate species. Niviventer hinpoon, phylogenetically closely related to N. fulvescens, is much rarer and its distribution limited to central Thailand. Most of the other captured species are typically associated with forest ecosystems. This study suggests that limestone karsts play a key role in the preservation of the rodent species endemic to such habitat, but they would also provide refuges for the forest-dwelling Murinae rodents in deforested regions.  相似文献   

7.
The Mediterranean area, from southern Balkans to western Maghreb, is inhabited by the Potamon subgenus Euthelphusa, with three currently recognised species. The Maghrebian species P. (E.) algeriense is isolated from other Potamon species by the Mediterranean Sea and the Sahara Desert, and nearly no molecular data are currently available for this taxon. Present study investigated the mtDNA and nuDNA diversity in Potamon algeriense s.l. with the aims of exploring its molecular diversity pattern throughout its known distribution range, and testing the possible presence of cryptic taxa currently lumped under this binomen. The phylogenetic and DNA taxonomy analyses showed the presence of two well-supported clades of species rank within P. algeriense s.l, with an eastern clade including the populations from Tunisia and Numidia, and a western, highly structured clade including the populations from central Algeria and Morocco. In agreement with a typical Maghrebian biogeographic pattern, the distribution of these two species shows a clear east–west divide, with a disjunction zone located in Kabylia, and a strong link between molecular diversity and segregation within different hydrographical basins is evident. The Maghreb thus proved to host an unexpectedly high genetic diversity of, and to constitute a biodiversity hot-spot for, the Potamon subgenus Euthelphusa. In the light of the existence of two well-characterised species currently lumped under P. algeriense s.l., and of their noteworthy molecular structuring, the status of Maghrebian Potamon populations should be re-assessed for both the species present in the area, which are to be considered as independent management units.  相似文献   

8.
地理因素对植物天然居群的物种分布和种内分化具有重要影响。该研究通过对箭竹复合体内39个居群的14对SSR数据进行深入分析,旨在揭示重要地理因素(如海拔、纬度、地理距离)对该复合体内遗传多样性和遗传分化式样的影响。结果表明:(1)糙花箭竹亚支系遗传多样性最高(H_e=0.50),而团竹亚支系的遗传多样性最低(H_e=0.33)。(2)遗传多样性与纬度、海拔在A、B两个支系水平呈显著正相关关系,但在亚支系水平,遗传多样性的变化趋势呈现出更为复杂的局面,部分支系表现为负相关关系,推测纬度和海拔对箭竹复合体内遗传多样性水平具有一定影响,但也需重视其他进化因素的作用。(3)Mantel检验显示,仅在团竹亚支系中检测出较弱的正相关关系,表明地理距离不是影响箭竹复合体内遗传分化的主导因素,后续需结合基因流检测推断杂交事件对其遗传分化的影响。  相似文献   

9.
Different scales and frequencies of glaciations developed in Europe and Asia during the Pleistocene. Because species’ responses to climate change are influenced by interactive factors including ecology and local topography, the pattern and tempo of species diversification may vary significantly across regions. The great tit Parus major is a widespread Eurasian passerine with a range that encircles the central Asian desert and high‐altitude areas of the Tibetan Plateau. A number of genetic studies have assessed the effect of paleo‐climate changes on the distribution of the European population. However, none have comprehensively addressed how paleo‐climate change affected the distribution of the great tit in China, an apparent hotspot of P. major subspecific diversity. Here, we describe likely paleo‐climatic effects on P. major populations in China based on a combination of phylogeography and ecological niche models (ENMs). We sequenced three mitochondrial DNA markers from 28 populations (213 individuals), and downloaded 112 sequences from outside its Chinese range. As the first step in clarifying the intra‐specific relationships among haplotypes, we attempted to clarify the divergence and demography of populations in China. Phylogeographic analysis revealed that P. major is comprised of five highly divergent clades with geographic breaks corresponding to steep mountains and dry deserts. A previously undescribed monophyletic clade with high genetic diversity, stable niches and a long and independent evolutionary history was detected in the mountainous areas of southwest China. The estimated times at which these clades diverged was traced back to the Early‐Middle Pleistocene (2.19–0.61 mya). Contrary to the post‐LGM (the Last Glacial Maximum) expansion of European populations, demographic history indicates that Asian populations expanded before the LGM after which they remained relatively stable or grew slowly through the LGM. ENMs support this conclusion and predict a similar distribution in the present and the LGM. Our genetic and ecological results demonstrate that Pleistocene climate changes shaped the divergence and demography of P. major in China.  相似文献   

10.
Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.  相似文献   

11.
As a widely distributed species along the Irtysh River, Phoxinus phoxinus ujmonensis (Kaschtschenko, 1899) was used as a model to investigate genetic diversity and population structure as well as the influence of environmental factors on population genetics. In this study, we specifically developed 12 polymorphic microsatellite loci. The analysis of microsatellite and mtDNA markers revealed a high and a moderate genetic diversity across seven populations, respectively. Moderate differentiation was also detected among several populations, indicating the impact of habitat fragmentation and divergence. The absence of isolation by distance implied an extensive gene flow, while the presence of isolation by adaptation implied that these populations might be in the process of adapting to divergent habitats. Correlation analysis showed that abiotic factors like dissolved oxygen, pH, total dissolved solids, and conductivity in water as well as biotic factors like plankton diversity and fish species diversity had impact on genetic diversity and divergence in P. phoxinus ujmonensis populations. The results of this study will provide an insight into the effect of environmental factors on genetic diversity and contribute to the study of population genetics of sympatric species.  相似文献   

12.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

13.
The swamp eel Monopterus albus is widely distributed in tropical and subtropical freshwaters ranging from Southeast Asia to East Asia, and is unique in its ability to breathe air through the buccal mucosa. To examine the genetic structure of this widespread species, molecular phylogenetic analyses of mitochondrial 16S rRNA sequence (514 bp) were conducted for 84 specimens from 13 localities in Southeast and East Asia. The analyses showed clearly that this species can be genetically delineated into three clades based on geographical populations [China–Japan (Honshu + Kyushu), Ryukyu Islands, and Southeast Asia clades], with each clade exhibiting its own reproductive behavior. Therefore, “M. albus” is believed to be composed of at least three species. The Southeast Asia clade with the highest genetic diversity may include more species. The Ryukyu clade was estimated to have diverged more than 5.7 million years ago, suggesting that the Ryukyuan “M. albus” is native. In contrast, in the China–Japan clade, all haplotypes from Japan were closely related to those from China, suggesting artificial introduction(s).  相似文献   

14.
Acontias plumbeus has traditionally been considered a monotypic, invariable species, a fact that highly contrasts with documented examples of high phylogenetic complexity and phenotypic diversity in other members of the Acontinae. We employed mitochondrial and nuclear DNA markers to investigate genetic structuring among A. plumbeus populations and the relationship between A. plumbeus and the closely related A. poecilus. Molecular genetic analyses revealed three clades with non‐overlapping distributions: an Eastern clade, a widely distributed Northern clade, and a Southern clade that includes topotypical A. poecilus. Morphometric analyses of preserved specimens showed that Southern clade populations are comprised of individuals with absolute and proportionally smaller body sizes than their Northern and Eastern relatives. Phylogenetic affinities within A. plumbeus indicate a complex biogeographic scenario within South Africa and suggest that A. poecilus should be considered a junior synonym of A. plumbeus instead of a truly valid species.  相似文献   

15.
The Andes of South America hosts perhaps the highest amphibian species diversity in the world, and a sizable component of that diversity is comprised of direct-developing frogs of the genus Pristimantis (Anura: Craugastoridae). In order to better understand the initial stages of species formation in these frogs, this study quantified local-scale spatial genetic structuring in three species of Pristimantis. DNA sequences of two mitochondrial gene fragments (16S and COI) were obtained from P. brevifrons, P. palmeri and P. jubatus at different locations in the Cordillera Occidental. We found high levels of genetic diversity in the three species, with highly structured populations (as measured by F ST) in P. brevifrons and P. palmeri while P. jubatus showed panmixia. Large effective population sizes, inferred from the high levels of genetic diversity, were found in the three species and two highly divergent lineages were detected within P. jubatus and P. palmeri. Estimated divergence times among populations within P. brevifrons and P. palmeri coincide with the Pleistocene, perhaps due to similar responses to climatic cycling or recent geological history. Such insights have important implications for linking alpha and beta diversity, suggesting regional scale patterns may be associated with local scale processes in promoting differentiation among populations in the Andes.  相似文献   

16.
We studied the phylogeography and population history of the white wagtail Motacilla alba, which has a vast breeding range, covering areas with different Pleistocene climatic histories. The mitochondrial NADH dehydrogenase subunit II gene (ND2) and Control Region (CR) were analyzed for 273 individuals from 45 localities. Our data comprised all nine subspecies of white wagtail. Four primary clades were inferred (M, N, SW and SE), with indications of M. grandis being nested within M. alba. The oldest split was between two haplotypes from the endemic Moroccan M. a. subpersonata (clade M) and the others, at 0.63–0.96 Mya; other divergences were at 0.31–0.38 Mya. The entire differentiation falls within the part of the Pleistocene characterized by Milankovitch cycles of large amplitudes and durations. Clade N was distributed across the northern Palearctic; clade SW in southwestern Asia plus the British Isles and was predicted by Ecological niche models (ENMs) to occur also in central and south Europe; and clade SE was distributed in central and east Asia. The deep divergence within M. a. subpersonata may reflect retention of ancestral haplotypes. Regional differences in historical climates have had different impacts on different populations: clade N expanded after the last glacial maximum (LGM), whereas milder Pleistocene climate of east Asia allowed clade SE a longer expansion time (since MIS 5); clade SW expanded over a similarly long time as clade SE, which is untypical for European species. ENMs supported these conclusions in that the northern part of the Eurasian continent was unsuitable during the LGM, whereas southern parts remained suitable. The recent divergences and poor structure in the mitochondrial tree contrasts strongly with the pronounced, well defined phenotypical differentiation, indicating extremely fast plumage divergence.  相似文献   

17.
Haplochromine cichlids form the most species-rich lineage of cichlid fishes that both colonized almost all river systems in Africa and radiated to species flocks in several East African lakes. The enormous diversity of lakes is contrasted by a relatively poor albeit biogeographically clearly structured species diversity in rivers. The present study analyzed the genetic structure and phylogeographic history of species and populations of the genus Pseudocrenilabrus in Zambian rivers that span two major African drainage systems, the Congo- and the Zambezi-system. The mtDNA phylogeny identifies four major lineages, three of which occur in the Congo-system and one in the Zambezi system. Two of the Congo-clades (Lake Mweru and Lunzua River) comprise distinct albeit yet undescribed species, while the fish of the third Congo-drainage clade (Chambeshi River and Bangweulu swamps), together with the fish of the Zambezi clade (Zambezi and Kafue River) are assigned to Pseudocrenilabrus philander. Concerning the intraspecific genetic diversity observed in the sampled rivers, most populations are highly uniform in comparison to lacustrine haplochromines, suggesting severe founder effects and/or bottlenecking during their history. Two bursts of diversification are reflected in the structure of the linearized tree. The first locates at about 3.9% mean sequence divergence and points to an almost simultaneous colonization of the sampled river systems. Subsequent regional diversification (with about 1% mean sequence divergence) occurred contemporaneously within the Kafue River and the Zambezi River. The clear-cut genetic biogeographic structure points to the dominance of geographic speciation in this lineage of riverine cichlid fishes, contrasting the importance of in situ diversification observed in lake cichlids.  相似文献   

18.
Phylogenetic, genetic and demographic information are key issues for establishing priorities for conservation. In this study we explored the Vane-Wrigth measure of phylogenetic diversity for establishing criteria for conservation, when intra as well as interpopulation level demographic (population size) and genetic (heterozygosity, inbreeding and genetic distances among populations) parameters are taken into consideration. The data were standardized and analyzed independently and integratively enabling the calculation of indices or criteria for conservation priorities. We illustrate the application of this approach in populations of four Mexican pine species that have been considered rare and endangered, Pinus rzedowzkii, P. pinceana, P. lagunae and P. muricata. The application of several independent diversity indices did not allow us to resolve prioritization. However, the integration of all indices generated different values of importance to conservation, and suggested that the populations with the highest priorities for conservation are: two for Pinus rzedowskii, P. pinceana, and P. lagunae, and one for P. muricata. These populations have intermediate sizes, are the most divergent in the phylogeny and contain genetic variation that is representative of the gene pool of each species. Finally, we demonstrated the functionality of some genetic and demographic parameters; the genetic structure, recruitment rate, geographic distribution and demographic stochasticity, as complementary indicators for evaluating the conservation priority among populations and species.  相似文献   

19.
Leopoldamys neilli is a threatened murine rodent species endemic to limestone karsts of Thailand. We have studied the phylogeography of L. neilli using two mitochondrial markers (cytb, COI) and one nuclear fragment (bfibr), in order to assess the influence of its endemicity to karst habitat. One hundred fifteen individuals of L. neilli were collected in 20 localities throughout the geographic range of this species in Thailand. Our study revealed strong geographic structure of the mtDNA genetic diversity: six highly differentiated, allopatric genetic lineages were observed in our dataset. They exhibit a very high degree of genetic divergence, low gene flow among lineages and low levels of haplotype and nucleotide diversities within lineages. Our results suggest that L. neilli’s populations are highly fragmented due to the scattered distribution of its karst habitat. The most divergent lineage includes the populations from western Thailand, which have been separated from the other genetic lineages since at least the Early Pleistocene. The other lineages are more closely related and have diverged since the Middle Pleistocene. This study revealed an unexpected high level of genetic differentiation within L. neilli and highlighted the high endemicity of this species to limestone karsts. Our results enhance the importance of protecting limestone habitats to preserve not only the species but also intraspecific diversity.  相似文献   

20.
Aim We examine the genetic diversity within the lizard genus Gekko in the Philippine islands to understand the role of geography and geological history in shaping species diversity in this group. We test multiple biogeographical hypotheses of species relationships, including the recently proposed Palawan Ark Hypothesis. Location Southeast Asia and the Philippines. Methods Samples of all island endemic and widespread Philippine Gekko species were collected and sequenced for one mitochondrial gene (NADH dehydrogenase subunit 2) and one nuclear gene (phosducin). We used maximum likelihood and Bayesian phylogenetic methods to derive the phylogeny. Divergence time analyses were used to estimate the time tree of Philippine Gekko in order to test biogeographical predictions of species relationships. The phylogenetic trees from the posterior distribution of the Bayesian analyses were used for testing biogeographical hypotheses. Haplotype networks were created for the widespread species Gekko mindorensis to explore genetic variation within recently divergent clades. Results Both maximum likelihood and Bayesian phylogenetic analyses indicated that Philippine Gekko species are a diverse clade with a long history in the archipelago. Ancestral range reconstruction and divergence time analyses suggest a Palawan microcontinental origin for this clade, coinciding with Palawan’s separation from Asia beginning 30 Ma, with subsequent diversification in the oceanic Philippine islands. The widespread species G. mindorensis and G. monarchus diversified in the late Miocene/early Pliocene and are potentially complexes of numerous undescribed species. Main conclusions The view of the Philippine islands as a ‘fringing archipelago’ does not explain the pattern of species diversity in the genus Gekko. Philippine Gekko species have diversified within the archipelago over millions of years of isolation, forming a large diverse group of endemic species. Furthermore, the Philippine radiation of gekkonid lizards demonstrates biogeographical patterns most consistent with stochastic colonization followed by in situ diversification. Our results reveal the need to consider deeper time geological processes and their potential role in the evolution of some Philippine terrestrial organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号