首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The cost of reproduction in dioecious plants is often female-biased. However, several studies have reported no difference in costs of reproduction between the sexes. In this study, the relative reproductive allocation and costs at the shoot and whole-plant levels were examined in woody dioecious Rhus javanica and R. trichocarpa, in order to examine differences between types of phenophase (i.e. physiological stage of development).

Methods

Male and female Rhus javanica and R. trichocarpa were sampled and the reproductive and vegetative allocation of the shoot were estimated by harvesting reproductive current-year shoots during flowering and fruiting. Measurements were made of the number of reproductive and total current-year shoots per whole plant, and of the basal area increment (BAI). The numbers of reproductive and total current-year shoots per 1-year-old shoot were counted in order to examine the costs in the following year at the shoot level.

Key Results

A female-biased annual reproductive allocation was found; however, the ratio of reproductive current-year shoots per tree and the BAI did not differ between sexes in Rhus javanica and R. trichocarpa. The percentage of 1-year-old shoots with at least one reproductive current-year shoot was significantly male-biased in R. trichocarpa, but not in R. javanica, indicating that there was a relative cost at the shoot level only in R. trichocarpa. The female-biased leaf mass per shoot, an indicator of compensation for costs, was only found in R. javanica.

Conclusions

Relative reproductive costs at the shoot level were detected in Rhus trichocarpa, which has simultaneous leafing and flowering, but not in R. javanica, which has leafing followed by flowering. However, the costs for the whole-plant level were diminished in both species. The results suggest that the phenophase type may produce the different costs for R. javanica and R. trichocarpa through the development of a compensation mechanism.Key words: Modularity, phenology, reproductive allocation, reproductive cost, Rhus javanica, Rhus trichocarpa  相似文献   

2.
The development of new shoots plays a central role in the complex interactions determining vegetative and reproductive growth in woody plants. To explore this role we evaluated the new shoots in the olive tree, Olea europaea L., and the effect of fruiting on new shoot growth and subsequent flowering. Five-year-old branches served as canopy subunits in order to obtain a global, whole-tree view of new shoot number, size and morphological origin. The non-bearing trees had many more shoots than the fruit-bearing trees, and a greater number of longer shoots. In both bearing conditions, however, the majority of shoots were less than 4 cm long, with shoots of progressively longer lengths present in successively decreasing frequencies. Six major shoot types were defined on the basis of apical or lateral bud origin and of parent shoot age. On fruit-bearing trees, the new shoots originated predominantly from the shoot apex, while on non-fruiting trees, they formed mainly from axillary buds, but in both cases, they tended to develop on younger parent shoots. The previous bearing condition of the tree was the main determinant for subsequent inflorescence development, which was independent of both shoot type and length. Thus, reproductive behavior strongly affected both the amount and type of new branching, but subsequent flowering level was more influenced by previous bearing than by the potential flowering sites on new shoots.  相似文献   

3.
The patterns of vegetative growth and reproduction in relation to orders of terminal branches were examined in the evergreen woody plant, Eurya japonica. The branch order number was determined centrifugally. The trunk was given order number 1; branches issuing directly from the trunk were order 2; branches growing on order 2 branches were order 3, and so on. The results of this study show the differential patterns of vegetative growth and reproduction in relation to the branch orders. Lower-order shoots of terminal branches grew more, but produced few flowers. On the other hand, for the higher-order terminal branches, shoot growth was very limited but flowering was more intense. The results show that a tree can be interpreted not as a mere population of equivalent modules but as a spatially structured population. Thus, it is essential to consider the position of modules within the branch system when patterns of vegetative growth and reproduction are examined. It is hypothesized that the difference in the opportunity cost in relation to the branch orders is the main cause of the spatial structure for patterns of vegetative growth and reproduction. Furthermore, for same-order terminal branches, current-year shoot elongation was independent of flowering intensity. These results suggest that this species only invests resources in reproduction that are surplus to its requirements for the functions associated with survival, such as growth and/or storage. Received: 22 July 1999 / Accepted: 12 January 2000  相似文献   

4.
Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.  相似文献   

5.
I measured the effect of early reproduction on subsequent growth and survival in the alpine perennial wildflower, Polemonium viscosum. Measurements were made over 4 yr on 34 maternal sibships under natural conditions. A significant phenotypic cost of early reproduction characterized the study population. Plants that flowered after only one year's growth had twice as many leaves and 25% more shoots than nonflowering individuals of equal age. However, early flowering decreased leaf number by 18% in the subsequent year and survivorship by 20% after two years relative to changes in leaf number and survival of nonflowering plants. For such trade-offs to shape the further evolution of reproductive schedules, flowering probability and those age-specific components of plant size that represent the energetic currency for reproductive costs must be heritable. Although families showed significant heterogeneity in the probability of early flowering, most (62%) entirely failed to flower. Moreover, phenotypic variation in vegetative size components at ages 1 and 2 had little genetic basis. Only at ages 3 and 4, after vegetative and demographic costs of early reproduction had been incurred, did vegetative size components (leaf length and number, and shoot number) vary significantly among families. Results of this study provide little evidence of a genetically based trade-off between early reproduction and subsequent survival in P. viscosum.  相似文献   

6.
Floral sex allocation (weight of male flower buds over weight of female flower buds) was examined at the levels of current-year shoot, individual tree and population, and the tree individual level and population level floral sex ratio was explained as a consequence of the behavior of current-year shoots in the shoot-level monoecious (flowering current-year shoots have both male and female flowers) species, Siberian alder (Alnus hirsuta var. sibirica). The current-year shoot level floral sex allocation was not size-dependent and not different over years. However, in the year when the reproductive intensity was high, individual tree level floral sex allocation was size-dependent and the population level floral sex allocation was relatively female-biased. The female-biased floral sex allocation at the population level resulted from many gynoecious shoots (current-year shoots which have only female flowers). These results suggest that the floral sex allocation of Siberian alder was controlled not by changing the floral sex allocation of each current-year shoot, but by shifting the sex expression of current-year shoots from shoot-level monoecy to shoot-level gynomonoecy.  相似文献   

7.
The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy.  相似文献   

8.
Siberian alder (Alnus hirsuta var. sibirica) shows annual variation in reproductive output. However, this phenomenon has not been explained by hypotheses proposed in previous studies. In this study, we constructed a matrix model of current-year shoot dynamics to estimate and compare the reproductive output of current-year shoot population with or without annual variation, and explained the annual variation of reproductive output in terms of a reproductive strategy of the current-year shoot population of Siberian alder. The current-year shoot population of Siberian alder was divided into three functional groups: reproductive, maintenance, and explorative shoot sub-populations. A transition matrix was calculated from the relationships between 1-year-old shoots and the current-year shoots on them. The dynamics of the current-year shoot population was simulated using the estimated matrix on the patterns with or without annual variation in reproductive output. The pattern with annual variation in reproductive output yielded more reproductive current-year shoots than the pattern with high reproductive output every year. The annual variation of reproductive output may well be regarded as a reproductive strategy of current-year shoots to increase lifetime fecundity.  相似文献   

9.
Summary Continuous axillary shoot proliferation and in vitro flowering were achieved using single node explants from a mature (over 70-yr-old) field clump of Dendrocalamus giganteus (giant bamboo). The shoots proliferated in a basal Murashige and Skoog medium with 6 mgl−1 (26.6 μM) N6-benzyladenine (BA) and 2% sucrose. The rate of shoot proliferation gradually increased to over three-fold before in vitro flowering took place. In vitro flowering was not the expression of a species-specific mechanism believed to occur during gregarious flowering, as the mother clump did not flower. The rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation leading to build up, and release of stress in relation to flowering and its reversion are discussed.  相似文献   

10.
To elucidate the significance of the simultaneous growth of vegetative and reproductive organs in the prostrate annual Chamaesyce maculata (L.) Small (Euphorbiaceae) from the standpoint of meristem allocation, we investigated plant architecture, meristem allocation, and the spatial and temporal patterns in vegetative growth and reproduction in the reproductive stage. The numbers of secondary and tertiary shoots successively increased by branching in the reproductive stage, and the sum of shoot length was greater in secondary shoots than in primary shoots. The specific shoot length (shoot length per shoot biomass) was greater in lateral shoots than in primary shoots, indicating efficient lateral shoot elongation. The internode length was shorter in secondary shoots than in primary shoots, increasing the number of nodes per shoot length in secondary shoots. Many nodes on a shoot generated two meristems, one of which committed to a flower and one to a lateral shoot. The number of reproductive meristems was greatest in tertiary shoots, and 96% of total reproductive meristems on shoots were generated in lateral shoots. On almost all nodes, the reproductive meristem developed into a flower, and 95–98% of the flowers produced a fruit. Therefore, vegetative growth by branching in the reproductive stage contributed to the increase in reproductive outputs. From the standpoint of meristem allocation, the simultaneous growth of vegetative and reproductive organs in prostrate plant species might be important for increasing the number of growth and reproductive meristems, resulting in the increase in reproductive outputs.  相似文献   

11.
BACKGROUND AND AIMS: Demography and spatial distribution of shoots are rarely studied on pruned trees. The present 2-year study deals with the effect of pruning strategies on shoot demography and development, and consequences on the spatial distribution of leaf area in three architecturally contrasted - from type II to IV - apple cultivars: 'Scarletspur Delicious', 'Golden Delicious' and 'Granny Smith'. METHODS: All trees were initially subjected during 5 years to Central Leader training with winter heading on all long shoots. For 2 years, half of the trees were further trained with Centrifugal training, where removal of flowering shoots - called extinction pruning - was carried out along the trunk and at the bottom of branches at flowering time. During these 2 years, shoot type (vegetative, inflorescence) and length, and the three-dimensional spatial distribution of all shoots were assessed with an electromagnetic digitizer. KEY RESULTS: Shoot demography, frequency of transitions toward an inflorescence from either an inflorescence (bourse-over-bourse) or a vegetative shoot (trend toward flowering), and the number of bourse-shoots per bourse were strongly affected by cultivar, with little influence of tree manipulation. In contrast, the proportion of vegetative long shoots developing from previous year latent buds was significantly lower in Centrifugal-trained trees for the three cultivars. Canopy volume showed large variations between cultivars, but only that of 'Granny Smith' was affected by tree manipulation in the 2 years. Spatial distribution of shoots varied significantly according to cultivar and manipulation. In 'Scarletspur Delicious' and, to a lesser extent 'Golden Delicious', the distribution of vegetative and flowering shoots in the outer and the inner parts, respectively, was not affected by tree manipulation. In contrast, in 'Granny Smith', vegetative shoots were stimulated in the periphery of Central Leader trees, whereas flowering shoots were stimulated in the periphery of Centrifugal-trained trees. CONCLUSIONS: In apple, the variability of responses to contrasted pruning strategies partly depends on the genetically determined growth and flowering habit of the cultivar.  相似文献   

12.
Insect herbivory can negatively or positively affect plant performance. We examined how a stem gall midge Rabdophaga rigidae affects the survival, growth, and bud production of current year shoots of the willow Salix eriocarpa. In mid-May, the gall midge initiates stem galls on the apical regions of shoots. The following spring, galled shoots had thicker basal diameters and more lateral shoots than ungalled shoots. Although galled shoots were on average 1.6 times longer than ungalled shoots, there were no significant differences in shoot length or in the numbers of reproductive, vegetative, and dormant buds per shoot. However, the subsequent survival of galled shoots was significantly higher than that of ungalled shoots, probably because of the thicker basal diameter. This increased shoot survival resulted in approximately two times greater reproductive, vegetative, and dormant bud production on galled shoots compared with ungalled shoots in the following spring. These results suggest that the willow regrowth induced by galling can lead to an increase in bud production through increased shoot survival.  相似文献   

13.
J. R. Obeso 《Ecography》1993,16(4):365-371
The cost of reproduction has been studied in two populations of the polycarpic herb Asphodelus albus under natural conditions The percentage of plants with flowers was determined in four sites and varied markedly among them The occurrence of reproduction was size-dependent, increasing flowering probability with plant size The cost of reproduction was assessed in terms of modular growth in reproductive plants relative to modular growth in vegetative ones I compared the modular growth of vegetative and reproductive plants considering two different densities m each of two populations Neither incidence of flowering nor modular growth were affected by density Flowering plants exhibited a withinramet demographic cost (in terms of modular growth) relative to non-flowering ramets in one population but not in the other This cost was greater in larger plants These results were concordant with the occurrence of flowering at both sites Both populations exhibited size-dependent patterns of allocation to reproduction, but no significant relationships were found between allocation to reproduction and cost of reproduction The data presented demonstrate differences in the cost of reproduction within a species This cost might determine whether a plant begins the reproduction, but probably have no effect on the reproductive allocation since the weight of the reproductive structures was not related to modular growth  相似文献   

14.
To simulate feeding by the spruce budworm ( Choristoneura fumiferana Clem.), the apical current-year shoots on 1-year-old branches in the uppermost whorl of 6-year-old balsam fir [ Abies balsamea (L.) Mill.] trees were either removed completely by debudding before the start of the growing season or defoliated 0, 50, 90 or 100% shortly after budbreak. Debudded branches were treated at the apical end with 0, 0.1 or 1.0 mg of indole-3-acetic acid (IAA) (g lanolin)−1. Ninety % of the 1-year-old needles were also removed from some of the experimental branches. After ca 4 weeks of growth, the radial width of new xylem and the level of IAA were determined in the 1-year-old internode. The IAA content was measured by radioimmunoassay.
The removal or defoliation of current-year shoots inhibited tracheid production and decreased the IAA level. Exogenous IAA stimulated tracheid production and increased the IAA level in debudded branches. Current-year shoot defoliation also inhibited current-year shoot elongation. The inhibitory effect of current-year needle removal on all parameters generally increased with increasing intensity of defoliation. The removal of 1-year-old needles did not affect the IAA level or current-year shoot elongation, nor did it influence tracheid production in branches with current-year shoots. However, removal of 1-year-old needles inhibited tracheid production in debudded branches supplied with exogenous IAA. The results indicate that (1) IAA is involved in the control of tracheid production in the 1-year-old internode, (2) IAA is supplied primarily by current-year shoots, and (3) defoliation by the spruce budworm inhibits tracheid production partly by decreasing the supply of IAA.  相似文献   

15.
Size structure of current-year shoots in mature crowns   总被引:1,自引:0,他引:1  
Suzuki M 《Annals of botany》2003,92(3):339-347
Characteristics of current-year shoot populations were examined for three mature trees of each of three deciduous broad-leaved species. For first-order branches (branches emerging from the vertical trunk) of the trees examined, lengths or diameters of all current-year shoots were measured. Total leaf mass and total current-year stem mass of first-order branches were estimated using an allometric relationship between leaf or stem mass and length or diameter of current-year stems. For each tree, the number of current-year shoots on a first-order branch was proportional to the basal stem cross-sectional area of the branch. On the other hand, first-order branches had shoot populations with size structures similar to each other. As a result, the leaf mass of a first-order branch was proportional to the basal stem cross-sectional area of the branch, being compatible with the pipe-model relationship. All current-year shoot populations had positively skewed size structures. Because small shoots have a larger ratio of leaf mass to stem mass than large shoots, first-order branches had an extremely large ratio of leaf mass to current-year stem mass. This biased mass allocation will reduce costs for current stem production, respiration and future radial growth, and is beneficial to mature trees with a huge accumulation of non- photosynthetic organs. The allometric relationships between leaf mass and basal stem diameter and that between leaf mass and current-year stem mass of first-order branches were each similar across the trees examined. Characteristics of shoot populations tended to offset inter-species diversity of shoot allometry so that branch allometry shows inter-species convergence.  相似文献   

16.
The variation of plant functional traits, from the cell to the whole-plant level, is a central question in trait-based ecology with regard to understanding ecological strategies and adaptations that result from environmental drivers. Here, we analyzed whole-plant and leaf traits of the phreatophyte Ziziphus lotus (L.) Lam., a long-lived shrub that dominates one of the few terrestrial groundwater-dependent ecosystems (GDEs) in Mediterranean Basin drylands. We (a) assessed architectural traits and growth patterns, (b) analyzed leaf morpho-functional traits (specific leaf area [SLA] and stomata pore index [SPI]) and physiological traits (gas exchange rates), as well as their variations within individuals, and (c) evaluated temporal variations in modular growth (i.e., sequential iteration of structural units) between growing seasons and in leaf traits within seasons. Z. lotus' growth pattern was based on the repetition of modules composed of shoots (short and long) and branches (flowering and plagiotropic) that promoted a functional differentiation between vegetative and reproductive structures, respectively. We identified morpho-functionally distinct leaves (i.e., heterophylly) borne on different types of branches. Leaves on flowering branches had higher SLA and water use efficiency (WUEi), but lower SPI and transpiration rates than leaves on vegetative ones. We also observed trade-offs in the elongation of vegetative and flowering structures between growing seasons: the shorter the long shoots, the larger the flowering branches. The modular differentiation and heterophylly of Z. lotus might contribute to prioritizing the investment of resources of this phreatophyte, either for growth or reproduction, and could improve the efficiency in uptake and conservation of resources in drylands.  相似文献   

17.
Several factors, such as environmental conditions, pruning, and plant growth regulators, affect the flowering of bougainvillea. However, information on the effect of shoot bending on growth and flowering of bougainvillea is scarce. In the natural environment, most of the bougainvillea flowering shoots are inclining whereas vertical shoots are not flowering shoots. Bougainvillea shoots are artificially grown vertically, horizontally and at an inclined orientation, to investigate the effect of these orientations on plant growth and the development of flower buds. The results of this indicate an effect of shoot bending on the growth rate of bougainvillea and the rate of flower bud formation. Additionally, our results suggest that vertical shoots have a higher growth rate, more prolific vegetation growth, and longer plastochrons (which are the intervals between the initiations of successive leaves). In contrast, horizontal and inclined shoots exhibited slower growth, a shorter time to reach flowering, and more flower buds. Inclined shoots had a higher endogenous ACC (1-aminocyclopropene-1-carboxylate) content and produced more ethylene than either horizontal or vertical shoots, indicating that more ACC in the inclined shoot is converted into ethylene, and the higher ethylene concentration in the inclined shoot causes it to mature earlier and flower sooner.  相似文献   

18.
In order to assess the importance of sexual and asexual reproduction during the life history of Scirpus mariqueter, its reproductive and growth characters were concurrently examined along an elevational gradient (from low elevation to high elevation). The proportions of flowering shoot and inflorescence mass, seed : flower ratio and seed weight were used to quantify the investment in sexual reproduction. The proportions of current-year shoot and rhizome mass were used to quantify the investment in asexual reproduction, and the proportion of corm mass was used for growth, respectively. It was found that vegetative propagation predominated at low elevation, whereas sexual reproduction predominated at high elevation; and that sexual reproduction increased with declining asexual reproduction along the gradient. The results suggest that asexual reproduction is relatively favored in the early life stage, whereas sexual reproduction is favored when the population becomes mature and aged, probably because of the functional differentiation between the two reproductive types. Sexual productive characters (i.e. the proportions of flowering shoot and inflorescence mass) were negatively correlated to both growth and asexual reproductive characters along the gradient, indicating there might exist some trade-offs among growth, sexual and asexual reproduction during the life history. However, no obvious pattern was found between asexual reproductive characters and growth characters along the elevational gradient, possibly because of the varied relationships between them at different life stages. The variations in sexual and asexual reproduction in the species and the relationship between them are thought to be of great significance for local population growth, species persistence and evolution.  相似文献   

19.
The timing of the transition from seed, seedlings and development into flowering is paramount importance in annual-type Zostera marina, because flowering is the first step of sexual reproduction. A majority of plants use environmental cues to regulate the transition to their developmental stages because plants must flower synchronously for successful outcrossing and must complete their sexual reproduction under favorable external conditions. The morphological characteristics (seeds and lateral shoot production, branch number, and inflorescence length) of reproductive shoots of Z. marina L. were examined in outdoor mesocosms to better understand the reproductive strategies of annual populations. Seeds in the germination experiment were divided into two groups: those exposed to cold (7 °C; vernalized group) and those left untreated (25-21 °C; non-vernalized group). All 600 seeds (300 from each group) were cultured for 2 months at 7, 10, 15, 20, and 25 °C in an indoor incubator. In the vernalized group, the germination rates were almost significantly higher than in the non-vernalized group. However, germination rates were not significantly affected by germination temperature. In outdoor mesocosms, production of vegetative shoots was observed in plants germinated at 15 and 20 °C in the vernalized group and at 10, 15 and 20 °C in the non-vernalized group. The highest number of vegetative shoots produced (35) was observed in plants germinated at 20 °C in the vernalized group, whereas seeds of either group failed to produce vegetative shoots when germinated at a low temperature (7 °C).In the flowering phase, the number of branches per shoot in the vernalized group was significantly higher than in the non-vernalized group. The total number of spadices on the 1st branches of plants in the vernalized group (germination at 20 °C) was significantly lower than that in the non-vernalized group at the same germination temperature. The total number of spadices per reproductive shoot in the vernalized group (germination at 10 °C) was also higher than in the non-vernalized group. Thus, both low temperature (vernalization) and seed germination temperature have implications for the sexual and asexual propagation of annual Z. marina populations.  相似文献   

20.
In trees, reproduction constitutes an important resource investment which may compete with growth for resources. However, detailed analyses on how growth and fruit production interact at the shoot level are scarce. Primary canopy growth depends on the development of current-year shoots and their secondary growth might also influence the number and size of fruits supported by them. We hypothesise that an enhanced thickening of current-year shoots is linked positively to acorn production in oaks. We analysed the effect of acorn production on shoot growth of two co-occurring Mediterranean oak species with contrasting leaf habit (Quercus ilex, Quercus faginea). Length and cross-sectional area of current-year shoots, apical bud mass, number of leaves and acorns, xylem and conductive area, number of vessels of acorn-bearing and non-bearing shoots were measured in summer and autumn. Nitrogen and carbohydrates analyses were also performed in stems and leaves of both shoot types. Stem cross-sectional area increased in acorn-bearing shoots when compared with non-bearing shoots for both species and such surplus secondary growth was observed since summer. In bearing shoots, the total transversal area occupied by vessels decreased significantly from basal to apical positions along the stem as did the xylem area and the number of vessels. Leaves of bearing shoots showed lower nitrogen concentration than those of non-bearing shoots. Carbohydrate concentrations did not differ in stems and leaves as a function of the presence of acorns. Such results suggest that carbohydrates may preferentially be allocated towards reproductive shoots, possibly through enhanced secondary growth, satisfying all their carbon demands for growth and reproduction. Our findings indicate that acorn production in the two studied oaks depends on shoot secondary growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号