首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of virus-infected (VI) and virus-eradicated (VE) Oncidium Gower Ramsey orchid plants grown under 30% of prevailing solar radiation and those transferred from 30 to 60% and 100% of prevailing solar radiation were studied under natural tropical conditions. Plants grown under 30% of prevailing solar radiation suffered lower leaf and floral production and reduced photosynthesis. When the irradiance was increased to 60% of prevailing solar radiation, enhancement of leaf and floral production and photosynthetic capacities were achieved. However, when the plants were transferred from 30 to 100% of prevailing solar radiation, the growth and photosynthetic capacities of the plants were significantly reduced. All plants exhibited a midday depression in photosynthetic CO2 assimilation ( A ), stomatal conductance ( g s) and F v/ F m ratio . The degree of midday depression of these parameters was not only associated with high temperatures and high irradiances but also with virus infection. Midday F v/ F m ratio depression indicated that dynamic photo-inhibition occurred in all plants grown under all three light conditions. However, chronic photo-inhibition, measured by pre-dawn F v/ F m ratio and chlorophyll content, occurred only in those plants transferred from 30 to 100% of prevailing solar radiation. Hence, it is concluded that the VI Oncidium Gower Ramsey was more susceptible to high irradiance than the VE plants.  相似文献   

2.
Responses of apple leaf stomata to environmental factors   总被引:5,自引:4,他引:1  
Abstract. Stomatal conductances ( g s) were measured on the leaves of 3–4 year old Golden Delicious trees and of seedlings of two other cultivars. Measurements were made on container grown trees in the field with a diffusion porometer in 1975 and 1976, and in controlled conditions in a leaf chamber in the laboratory in 1976. Stomatal densities in the Golden Delicious leaves were assessed from scanning electron micrographs. Stomatal density on extension shoot leaves was higher than on other leaf types after June.
The response to irradiance shown by both the porometer and the leaf chamber results could be described by a rectangular hyperbola: where g max is maximum conductance and β indicates the sensitivity of gs to photon influx density ( Q p). The values of β were in the range 60–90 μmol m−2 s−1.
There was no evidence that apple stomata are sensitive to temperature per se, but g s was reduced by increasing leaf to air vapour pressure deficits ( D ). There was a linear relationship between g s and D which was not attributable to feed-back to leaf water potential (ψL) as the latter did not affect g s until a threshold of about −2.0 to −2.5 MPa was reached. Conductance generally declined with increasing ambient CO2 concentration.  相似文献   

3.
Abstract. Osmotic adjustment, a mechanism whereby plants maintain positive turgor despite low water potential (ψ), was investigated in pearl millet ( Pennisetum americanum [L.] Leeke) in three types of field experiment at Hyderabad, India:
  • (1)

    Osmotic adjustment during the growing season was evaluated by comparing solute potential (ψs) of leaves taken at midday from irrigated and droughted plots and allowed to rehydrate in the laboratory. The degree of seasonal adjustment was also estimated by comparing observed values of ψs in the field with those expected if ψs decreased solely in proportion to water loss. Both types of assessment indicated the maximum seasonal adjustment to be about 0.2 MPa. The cultivars BJ 104 and Serere 39 differed in their capacity to adjust osmotically over the season; Serere 39 was least able to osmoregulate.

  • (2)

    Measurements of diurnal variations in ψ and ψs in BJ 104 revealed osmotic adjustment during the afternoon hours. At a given value of ψ, turgor (ψp) was about 0.1 MPa higher in irrigated, and over 0.2 MPa higher in droughted plants, in the afternoon, than in the morning.

  • (3)

    Osmotic adjustment of different leaves within the canopy was investigated. Upper leaves had lower ψ than basal leaves. Differences in ψ were matched by gradients in ψs, so that turgor was similar for all leaf layers.

  相似文献   

4.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

5.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

6.
The effects of summer drought, dew deposition on leaves and autumn rainfall on plant water relations and diurnal variations of photosynthesis were measured in two evergreen shrubs, rosemary ( Rosmarinus officinalis ) and lavender ( Lavandula stoechas ), grown in Mediterranean field conditions. Withholding water for 40 d caused a similar decrease in predawn shoot water potential (ψpd) from c. −0.4 to c. −1.3 MPa in both species, but a 50% decrease in the relative leaf water content in L. stoechas compared with 22% in R. officinalis . A similar decrease in CO2 assimilation rates by c. 75% was observed in water-stressed plants of both species, although L. stoechas showed smaller photosynthesis: stomatal conductance ratio than R. officinalis (35 vs 45 μmol CO2:mol H2O). The relative quantum efficiency of photosystem II photochemistry also decreased by c. 45% at midday in water- stressed plants of both species. Nevertheless, neither L. stoechas nor R. officinalis suffered drought-induced damage to photosystem II, as indicated by the maintenance of the ratio F v: F m throughout the experiment, associated with an increase in the carotenoid content per unit of chlorophyll by c. 62% and c. 30%, respectively, in water-stressed plants. Only L. stoechas absorbed dew by leaves. In this species the occurrence of 6 d of dew over a 15-d period improved relative leaf water content by c. 72% and shoot water potential by c. 0.5 MPa throughout the day in water-stressed plants, although the photosynthetic capacity was not recovered until the occurrence of autumn rainfall. The ability of leaves to absorb dew allowed L. stoechas to restore plant water status, which is especially relevant in plants exposed to prolonged drought.  相似文献   

7.
Photosynthetic rate and quatum efficiency of grapevine (Vitis vinifera L. cv. Sauvignon blanc) leaves were measured under the field with ample soil water supply, and in phytotron with ample supply of water and mineral nutrients, constant air humidity and CO2 concentration, and optimum air temperature, respectively. Under field conditions CO2 assimilation quantum efficiency of leaves reached its maximum in the morning, which was followed by continuous decrease and midday depression. The leaves intercepting more light energy in the morning showed a higher quantum efficiency. Those leaves subjected continuously to strong irradiance exhibited a more obvious and longer midday depression. Reduction of leaf light interception around midday could reduce midday depression. Shaded leaves had a higher quantum efficiency than leaves under direct sunlight. The diurnal changes in photosynthetic rate and quantum efficiency of leaves were shown to be closely related to the variations in mesophyll resistance to CO2. In phytotron experiments the photosynthetic quantum efficiency of leaves was reduced after a certain period of illumination not only at 1200 μmol · m-2 · s-1 PFD, higher than the saturating light of vine leaves (≈1000 μmol · m-2 · s-1), which was caused by "photoinhibition”, but also at 800 and 200μmol · m-2 · s-1, which was similar to "photoinhibition”. But photosynthetic quantum efficiency of leaves exposed continuously to a very weak PFD (100 μmol · m -2 · s-1) remained contant. The diurnal changes in mesophyll resistance to CO2 of vine leaves could be partly related to photoinhibition. It is considered that, under field conditions without soil water limitation, midday depression of vine leaf photosynthesis could be a result of an increase of the mesophyll resistance induced by multiple effects of strong light, high temperature and low humidity. A higher light interception by canopy plane in the morning may be advantageous to exploit higher photosynthetic potentiality of leaves, but a lower light interception in the middle of day may reduce midday depression. The north-south orientation plane can provide optimum light regime and improve photosynthetic environment in vineyards.  相似文献   

8.
By analysis of gas exchange and chlorophyll fluorescence, the effects of NaCl treatment and supplemental CaCl2 on photosynthesis, photosystem II (PSII) photochemistry and photoinhibition were investigated in Rumex leaves. Photosynthesis in Rumex leaves was strongly inhibited by 200 m M NaCl treatment. Such inhibition of photosynthesis was ameliorated by CaCl2 supplement. Neither NaCl treatment nor CaCl2 supplement had any significant effects on the PSII primary photochemical reaction in dark-adapted leaves. In light-adapted leaves, however, 200 m M NaCl treatment significantly decreased photochemical quenching (qp), efficiency of excitation energy capture by open PSII reaction centers (FV'/FM') and quantum yield of PSII electron transport (ΦPSII). These decreases in qp, FV'/FM' and ΦPSII were mitigated by CaCl2 supplement with the maximum of its effect appearing at a concentration of 8 m M CaCl2. A similar mitigating effect was shown in 200 m M NaCl-treated Rumex leaves when susceptibility of PSII to photoinhibition was determined under high irradiance. It is suggested that the mitigation of photoinhibition in NaCl-treated leaves is because of the amelioration of inhibition of photosynthesis.  相似文献   

9.
1. Shade-tolerant species that inhabit the understorey have a range of leaf lifetimes (from 1 to 8 years), which may indicate a variety of strategies for dealing with increases in light associated with tree-fall gaps. We hypothesized that species with long-lived leaves should be more tolerant of an increase in light levels than species with short-lived leaves.
2. In understorey plants of 12 shade-tolerant rain-forest species, photoinhibition, measured as a reduction in the chlorophyll fluorescence parameter F v/ F m when leaf discs were exposed to 1h at 1000μmol m–2s–1, was greater in species with short-lived leaves than species with long-lived leaves.
3. Less photoinhibition in species with long-lived leaves was not associated with higher levels of non-photochemical dissipation (NPQ) of absorbed light, but may be the result of a higher yield of photosystem II compared with short-lived leaves.
4. Thus, species with long-lived leaves are more tolerant of abrupt increases in light that occur when tree-fall gaps are formed than species with short-lived leaves.
5. Discs from leaves of all species growing in tree-fall gaps had higher levels of NPQ, yield of photosystem II and more rapid recovery from photoinhibition than leaves developed in the understorey; however, there were no differences among species with short- and long-lived leaves.  相似文献   

10.
Five evergreen subtropical tree species growing under identical environmental conditions were investigated to establish which hydraulic properties are genotypically rigid and which show phenotypic plasticity. Maximum xylem-specific conductivity ( k s) correlated well with the anatomical characteristics (conduit diameter and density) for the four angiosperms Tecomaria capensis , Trichilia dregeana , Cinnamomum camphora and Barringtonia racemosa ; the anatomy of the gymnosperm Podocarpus latifolius was not assessed. Huber values (functional xylem cross-sectional area : leaf area) varied inversely with k s among species. Maximum leaf-specific conductivity was similar in the five unrelated species. Vulnerability of xylem to cavitation differed between species, as did the relationship between transpiration and water potential. Models of these parameters and isolated midday readings confirm that these trees operate at similar maximum leaf-specific conductivity ( k l) values. The data are consistent with the hypothesis that conductivity characteristics ( k l, k s) are influenced by environment, whereas vulnerability to cavitation is genetically determined.  相似文献   

11.
The study examined the relationships between whole tree hydraulic conductance ( K tree) and the conductance in roots ( K root) and leaves ( K leaf) in loblolly pine trees. In addition, the role of seasonal variations in K root and K leaf in mediating stomatal control of transpiration and its response to vapour pressure deficit ( D ) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K root declined faster than K leaf. Although K tree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K leaf when REW was below 50%. After accounting for the effect of D on g s, the seasonal decline in K tree caused a 35% decrease in g s and in its sensitivity to D , responses that were mainly driven by K leaf under high REW and by K root under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K tree and g s and the acclimation of trees to changing environmental conditions.  相似文献   

12.
Using a laboratory-constructed system that can measure the gas exchange rates of two leaf surfaces separately, the light responses of the adaxial and abaxial stomata in intact leaves of sunflower ( Helianthus annuus L.) were investigated, keeping the intercellular CO2 concentration ( C i) at 300  µ L L−1. When evenly illuminating both sides of the leaf, the stomatal conductance ( g s) of the abaxial surface was higher than that of the adaxial surface at any light intensity. When each surface of the leaf was illuminated separately, both the adaxial and abaxial stomata were more sensitive to the light transmitted through the leaf (self-transmitted light) than to direct illumination. Relationships between the whole leaf photosynthetic rate ( A n) and the g s for each side highlighted a strong dependence of stomatal opening on mesophyll photosynthesis. Light transmitted through another leaf was more effective than the direct white light for the abaxial stomata, but not for the adaxial stomata. Moreover, green monochromatic light induced an opening of the abaxial stomata, but not of the adaxial stomata. As the proportion of blue light in the transmitted light is less than that in the white light, there may be some uncharacterized light responses, which are responsible for the opening of the abaxial stomata by the transmitted, green light.  相似文献   

13.
The effects of sodium fluoride (0.3, 5 and 10 m M NaF) on root hydraulic conductivity, and gas exchange processes were examined in aspen ( Populus tremuloides Michx.) seedlings grown in solution culture. A long-term exposure of roots to NaF significantly decreased root hydraulic conductivity ( L p) and stomatal conductance ( g s). Root absorbed NaF significantly affected electrolyte leakage in leaf tissues and substantially restricted leaf expansion. NaF did not significantly affect leaf chlorophyll contents but decreased net photosynthesis ( P n). A short-term exposure of excised roots to 5 m M NaF and KF significantly decreased root water flow ( Q v) with a concomitant decline in root respiration and reduced g s when applied through intact roots or excised stems. The same molar concentration of NaCl also decreased Q v and g s in intact seedlings, but to a lesser extent than NaF or KF, and did not significantly affect root respiration. The results suggest that fluoride metabolically inhibited Q v or L p, probably by affecting water channel activity. We suggest that the metabolic inhibition of L p by root-absorbed fluoride affected gas exchange and leaf expansion in aspen seedlings.  相似文献   

14.
Rates of photosynthesis and leaf conductance of the leaves of carob trees ( Ceratonia siliqua L.) growing in natural conditions were measured during the course of the seasons to define the effects of the main climatic factors limiting growth in the region: temperature during the winter and water in the summer. The highest photosynthetic rates were measured in spring and autumn and could reach 25 μmol m−2 s−1 with optimal temperature and available water. Due to lower temperatures (4 to 6°C in the night) these values were frequently around 15 μmol m−2 s−1 during winter, but the strongest depression was due to prolonged drought in summer. However a reduction in photosynthesis rate down to 5 μmol m−2 s−1 occurred only after depletion of all the available water in the soil layer up to a depth of 50 cm. In the end of the summer, leaf conductance and water potential were in the order of 20 mmol m−2 s−1 and −3 MPa respectively. Compared to other trees that make up the Mediterranean sclerophyll forest, the photosynthetic activity of carob is high, and the tree tolerates a considerable depletion of soil water.  相似文献   

15.
Shirke  P.A.  Pathre  U.V. 《Photosynthetica》2003,41(1):83-89
The plants of Prosopis juliflora growing in northern India are exposed to large variations of temperature, vapour pressure deficits (VPD), and photosynthetic photon flux density (PPFD) throughout the year. Under these conditions P. juliflora had two short periods of leaf production, one after the winter season and second after summer, which resulted in two distinct even aged cohorts of leaves. In winter with cold nights (2–8 °C) and moderate temperatures during the day, the plants showed high rates of photosynthesis. In summer the midday temperatures often reached <45 °C and plants showed severe inhibition of photosynthesis. The leaves of second cohort appeared in July and showed typical midday depression of photosynthesis. An analysis of diurnal partitioning of the absorbed excitation energy into photochemistry showed that a smaller fraction of the energy was utilised for photochemistry and a greater fraction was dissipated thermally, further the photon utilisation for photochemistry and thermal dissipation is largely affected by the interaction of irradiance and temperature. The plants showed high photochemical efficiency of photosystem 2 (PS2) at predawn and very little photoinhibition in all seasons except in summer. The photoinhibition in summer was pronounced with very poor recovery during night. Since P. juliflora exhibited distinct pattern of senescence and production of new leaves after winter and summer stress period, it appeared that the ontogenic characteristic together with its ability for safe dissipation of excess radiant energy in P. juliflora contributes to its growth and survival.  相似文献   

16.
Midday leaf angle, photosynthetic gas exchange, stable carbon isotope ratio ( δ 13C), and chlorophyll a fluorescence among three wild soybeans, Glycine soja, G . tomentella and G . tabacina, from habitats with different water availability were examined. Plants grown under low water availability had reduced leaf area, photosynthetic and electron transport rates, more positive δ 13C values, and more vertical midday leaf angles. The three species differed in midday leaflet orientation, leaf size, photosynthesis and fluorescence responses to water availability. The species differences were consistent with the water availability of their habitat. G . soja , which grows in the wettest habitats, was shown to be the most photosynthetically susceptible to low water treatment and tended to have the most vertical midday leaflet angles. In contrast, G . tabacina , distributed in the driest habitats, had the least vertical midday leaflet angles and the lowest photosynthetic sensitivity to low water availability. G . tomentella , inhabiting an intermediate habitat, had intermediate midday leaf angles and photosynthetic responses. Our results support the hypothesis that paraheliotropic leaf movements respond in concert with photosynthetic characteristics in soybean leaves such that water use efficiency is enhanced and the risk of photoinhibition under water stress conditions is reduced.  相似文献   

17.
Drought and salinity (i.e. soil water stress) are the main environmental factors limiting photosynthesis and respiration and, consequently, plant growth. This review summarizes the current status of knowledge on photosynthesis and respiration under water stress. It is shown that diffusion limitations to photosynthesis under most water stress conditions are predominant, involving decreased mesophyll conductance to CO2, an important but often neglected process. A general failure of photochemistry and biochemistry, by contrast, can occur only when daily maximum stomatal conductance ( g s) drops below 0.05–0.10 mol H2O m−2 s−1. Because these changes are preceded by increased leaf antioxidant activities ( g s below 0.15–0.20 mol H2O m−2 s−1), it is suggested that metabolic responses to severe drought occur indirectly as a consequence of oxidative stress, rather than as a direct response to water shortage. As for respiration, it is remarkable that the electron partitioning towards the alternative respiration pathway sharply increases at the same g s threshold, although total respiration rates are less affected. Despite the considerable improvement in the understanding of plant responses to drought, several gaps of knowledge are highlighted which should become research priorities for the near future. These include how respiration and photosynthesis interact at severe stress, what are the boundaries and mechanisms of photosynthetic acclimation to water stress and what are the factors leading to different rates of recovery after a stress period.  相似文献   

18.
The aim of this study was to investigate the extent to which fully developed leaves of Hedera helix L. are capable of acclimating to new light conditions and how this ability is determined by the life phase of the plant. To this end juvenile and adult plants were transferred from a low (L) to a moderately high (H) light regime and vice versa and changes of photosynthetic gas exchange, RuBP carboxylase (EC 4.1.1.39) activity and specific anatomy were monitored in leaves that were fully developed prior to the transfer.
Immediately after transfer from L to H there was a decrease in the rate of net photosynthesis (Fn). This photoinhibition was particularly pronounced in leaves of the adult life phase. Fn recovered after 10 to 20 days at H, and 40 to 65 days after transfer the rate exceeded that of control plants by about 20% in leaves of the adult life phase and by about 50% in leaves of the juvenile life phase. If H plants were transferred to L, Fn had declined only slightly after 30 to 40 days and regained its initial level within a few days, when the plants were returned to the original high light regime.
The increased rates of Fn per unit leaf area in leaves transferred from L to H were associated with higher light levels necessary to saturate Fn, higher carboxylation efficiencies, higher contents of soluble protein and higher activities of RuBP carboxylase, whereas the quantum yield did not change. Although fully differentiated before transfer, the leaves had formed a further cell layer in the palisade parenchyma. Related to leaf volume there was no increase in Fn.
Our results indicate that in the adult life phase of ivy phenotypie light acclimation occurs mainly during leaf development, whereas in juvenile plants fully expanded leaves still possess a rather wide modulativc acclimation plasticity.  相似文献   

19.
There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach ( Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F V/F M), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO2 and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.  相似文献   

20.
Photosystem II (PSII) activity was examsined in leaves of chilling-sensitive cucumber ( Cucumis sativus L.), tomato ( Lycopersicum esculentum L.), and maize ( Zea mays L.), and in chilling-tolerant barley ( Hordeum vulgare L.) illuminated with moderate white light (300 µmol m−2 s−1) at 4°C using chlorophyll a fluorescence measurements. PSII activity was inhibited in leaves of all the four plants as suggested by the decline in F v/ F m, 1/ F o − 1/ F m, and F v/ F o values. The changes in initial fluorescence level ( F o), F v/ F m, 1/ F o − /1/ F m, and F v/ F o ratios indicate a stronger PSII inhibition in cucumber, maize and tomato plants. The kinetics of chlorophyll a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by photoinhibition. The selective suppression of the J-I phase of fluorescence rise kinetics provides evidence for weakened electron donation from the oxidizing side, whereas the accumulation of reduced QA suggests damage to the acceptor side of PSII. These findings imply that the process of chilling-induced photoinhibition involves damage to more than one site in the PSII complexes. Furthermore, comparative analyses of the decline in F v/ F o and photooxidation of P700 explicitly show that the extent of photoinhibitory damage to PSII and photosystem I is similar in leaves of cucumber plants grown at a low irradiance level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号