首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
2.
MOTIVATION: Short linear peptide motifs mediate protein-protein interaction, cell compartment targeting and represent the sites of post-translational modification. The identification of functional motifs by conventional sequence searches, however, is hampered by the short length of the motifs resulting in a large number of hits of which only a small portion is functional. RESULTS: We have developed a procedure for the identification of functional motifs, which scores pattern conservation in homologous sequences by taking explicitly into account the sequence similarity to the query sequence. For a further improvement of this method, sequence filters have been optimized to mask those sequence regions containing little or no linear motifs. The performance of this approach was verified by measuring its ability to identify 576 experimentally validated motifs among a total of 15 563 instances in a set of 415 protein sequences. Compared to a random selection procedure, the joint application of sequence filters and the novel scoring scheme resulted in a 9-fold enrichment of validated functional motifs on the first rank. In addition, only half as many hits need to be investigated to recover 75% of the functional instances in our dataset. Therefore, this motif-scoring approach should be helpful to guide experiments because it allows focusing on those short linear peptide motifs that have a high probability to be functional.  相似文献   

3.
Information about the three-dimensional structure or functionof a newly determined protein sequence can be obtained if theprotein is found to contain a characterized motif or patternof residues. Recently a database (PROSITE) has been establishedthat contains 337 known motifs encoded as a list of allowedresidue types at specific positions along the sequence. PROMOTis a FORTRAN computer program that takes a protein sequenceand examines if it contains any of the motifs in PROSITE. Theprogram also extends the definitions of patterns beyond thoseused in PROSITE to provide a simple, yet flexible, method toscan either a PROSITE or a user-defined pattern against a proteinsequence database. Received on October 17, 1990; accepted on November 15, 1990  相似文献   

4.
Discovering structural correlations in alpha-helices.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have developed a new representation for structural and functional motifs in protein sequences based on correlations between pairs of amino acids and applied it to alpha-helical and beta-sheet sequences. Existing probabilistic methods for representing and analyzing protein sequences have traditionally assumed conditional independence of evidence. In other words, amino acids are assumed to have no effect on each other. However, analyses of protein structures have repeatedly demonstrated the importance of interactions between amino acids in conferring both structure and function. Using Bayesian networks, we are able to model the relationships between amino acids at distinct positions in a protein sequence in addition to the amino acid distributions at each position. We have also developed an automated program for discovering sequence correlations using standard statistical tests and validation techniques. In this paper, we test this program on sequences from secondary structure motifs, namely alpha-helices and beta-sheets. In each case, the correlations our program discovers correspond well with known physical and chemical interactions between amino acids in structures. Furthermore, we show that, using different chemical alphabets for the amino acids, we discover structural relationships based on the same chemical principle used in constructing the alphabet. This new representation of 3-dimensional features in protein motifs, such as those arising from structural or functional constraints on the sequence, can be used to improve sequence analysis tools including pattern analysis and database search.  相似文献   

5.
The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.  相似文献   

6.
Skrabanek L  Niv MY 《Proteins》2008,72(4):1138-1147
Sequence signature databases such as PROSITE, which include protein pattern motifs indicative of a protein's function, are widely used for function prediction studies, cellular localization annotation, and sequence classification. Correct annotation relies on high precision of the motifs. We present a new and general approach for increasing the precision of established protein pattern motifs by including secondary structure constraints (SSCs). We use Scan2S, the first sequence motif-scanning program to optionally include SSCs, to augment PROSITE pattern motifs. The constraints were derived from either the DSSP secondary structure assignment or the PSIPRED predictions for PROSITE-documented true positive hits. The secondary structure-augmented motifs were scanned against all SwissProt sequences, for which secondary structure predictions were precalculated. Against this dataset, motifs with PSIPRED-derived SSCs exhibited improved performance over motifs with DSSP-derived constraints. The precision of 763 of the 782 PSIPRED-augmented motifs remained unchanged or increased compared to the original motifs; 26 motifs showed an absolute precision increase of 10-30%. We provide the complete set of augmented motifs and the Scan2S program at http://physiology.med.cornell.edu/go/scan2s. Our results suggest a general protocol for increasing the precision of protein pattern detection via the inclusion of SSCs.  相似文献   

7.
A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix. RESULTS: We describe Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices. The program computes a log-likelihood ratio score for each position in a given sequence database, uses established dynamic programming methods to convert this score to a P-value and then applies false discovery rate analysis to estimate a q-value for each position in the given sequence. FIMO provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats. The program is efficient, allowing for the scanning of DNA sequences at a rate of 3.5 Mb/s on a single CPU. Availability and Implementation: FIMO is part of the MEME Suite software toolkit. A web server and source code are available at http://meme.sdsc.edu.  相似文献   

8.
A procedure that automatically provides an evaluation of thediagnostic ability of a protein sequence functional patternis described. The procedure relies on the identification ofthe closest definable set in terms of a (protein sequence) databasefunctional annotation to the set of database instances containinga given pattern. Assuming annotation correctness and completenessin the protein sequence database, the degree of statisticalassociation between these sets provides an appropriate measureof the diagnostic ability of the pattern. An experimental implementationof the procedure, using the NBRF/PIR protein database, has beenapplied to a diverse collection of published sequence patterns.Results obtained reveal that frequently it is not possible todefine (in NBRF/PIR database terminology) the set of databaseinstances containing a given pattern, suggesting either lackof pattern diagnostic ability or protein database annotationincompleteness and/or inconsistencies. Received on November 30, 1989; accepted on July 20, 1990  相似文献   

9.
A tool for searching pattern and fingerprint databases is described.Fingerprints are groups of motifs excised from conserved regionsof sequence alignments and used for iterative database scanning.The constituent motifs are thus encoded as small alignmentsin which sequence information is maximised with each databasepass; they therefore differ from regular-expression patterns,in which alignments are reduced to single consensus sequences.Different database formats have evolved to store these disparatetypes of information, namely the PROSITE dictionary of patternsand the PRINTS fingerprint database, but programs have not beenavailable with the flexibility to search them both. We havedeveloped a facility to do this: the system allows query sequencesto be scanned against either PROSITE, the full PRINTS database,or against individual fingerprints. The results of fingerprintsearches are displayed simultaneously in both text and graphicalwindows to render them more tangible to the user. Where structuralcoordinates are available, identified motifs may be visualisedin a 3D context. The program runs on Silicon Graphics machinesusing GL graphics libraries and on machines with X servers supportingthe PEX extension: its use is illustrated here by depictingthe location of low-density lipoprotein-binding (LDL) motifsand leucine-rich repeats in a mosaic G-protein-coupled receptor(GPCR).  相似文献   

10.
A new sequence motif library StrProf was constructed characterizing the groups of related proteins in the PDB three-dimensional structure database. For a representative member of each protein family, which was identified by cross-referencing the PDB with the PIR superfamily classification, a group of related sequences was collected by the BLAST search against the nonredundant protein sequence database. For every group, the motifs were identified automatically according to the criteria of conservation and uniqueness of pentapeptide patterns and with a dual dynamic programming algorithm. In the StrProf library, motifs are represented by profile matrices rather than consensus patterns to allow more flexible search capabilities. Another dynamic programming algorithm was then developed to search this motif library. When the computationally derived StrProf was compared with PROSITE, which is a manually derived motif library in the best consensus pattern representation, the numbers of identified patterns were comparable. StrProf missed about one third of the PROSITE motifs, but there were also new motifs lacking in PROSITE. The new library was incorporated in SMART (Sequence Motif Analysis and Retrieval Tool), a computer tool designed to help search and annotate biologically important sites in an unknown protein sequence. The client program is available free of charge through the Internet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号