首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To assess the contributions of rustic shade cacao plantations to vascular epiphyte conservation, we compared epiphyte species richness, abundance, composition, and vertical distributions on shade trees and in the understories of six plantations and adjacent natural forests. On three phorophytes and three 10 × 10 m understory plots in each of the agroforestry plantations and natural forests, 54 and 77 species were observed, respectively. Individual-based rarefaction curves revealed that epiphyte species richness was significantly higher on forest phorophytes than on cacao farm shade trees; detailed analyses showed that the differences were confined to the inner and outer crown zones of the phorophytes. No differences in epiphyte species richness were found in understories. Araceae, Piperaceae, and Pteridophyta were less species-rich in plantations than in forests, while there were no differences in Orchidaceae and Bromeliaceae. Regression analysis revealed that epiphyte species richness on trunks varied with canopy cover, while abundance was more closely related to soil pH, canopy cover, and phorophyte height. For crown epiphytes, phorophyte diameter at breast height (dbh) explained much of the variation in species richness and abundance. There were also pronounced downward shifts in the vertical distributions of epiphyte species in agroforests relative to natural forests. The results confirm that epiphyte diversity, composition, and vertical distributions are useful indicators of human disturbance and showed that while the studied plantations serve to preserve portions of epiphyte diversity in the landscape, their presence does not fully compensate for the loss of forests.  相似文献   

2.
This study examines the occurrence of vascular epiphytic species in Central Amazonian black-water floodplain forests (igapó) and considers whether their horizontal and vertical distribution is influenced by the flood pulse, as is the case with tree species (phorophytes). Research was conducted in sixteen forest plots the Jaú National Park. In these, epiphytes on all phorophytes with DBH ≥ 10 cm were identified. We measured flood height using the watermark left by the last high-water period, then estimated the height relative to the ground of every epiphytic individual. We recorded 653 individuals in 37 species, distributed on 109 phorophytes. Igapó floodplain forests have much lower richness and abundance of vascular epiphyte species than do other Amazonian forests. This may reflect the limitation of available sites for colonization (only 24.9% of studied trees were occupied by epiphytes). Holoepiphytes predominated, and the combined presence of a flood-pulse, linked to the nutrient-poor soil poor seems to limit the occurrence of nomadic vines. Horizontal distribution of epiphytes followed the distribution of phorophytes, which in turn followed the flood-level gradient. Also flooding interacted strongly with vertical zonation to determine species richness. As already well-reported for trees, and unlike reports of epiphytes in other floodplains, flooding strongly influenced richness and distribution of vascular epiphytes in the studied igapó forests.  相似文献   

3.
The commensalistic interaction between vascular epiphytes and host trees is a type of biotic interaction that has been recently analysed with a network approach. This approach is useful to describe the network structure with metrics such as nestedness, specialization and interaction evenness, which can be compared with other vascular epiphyte-host tree networks from different forests of the world. However, in several cases these comparisons showed different and inconsistent patterns between these networks, and their possible ecological and evolutionary determinants have been scarcely studied. In this study, the interactions between vascular epiphytes and host trees of a subtropical forest of sierra de San Javier (Tucuman, Argentina) were analysed with a network approach. We calculated metrics to characterize the network and we analysed factors such as the abundance of species, tree size, tree bark texture, and tree wood density in order to predict interaction frequencies and network structure. The interaction network analysed exhibited a nested structure, an even distribution of interactions, and low specialization, properties shared with other obligated vascular epiphyte-host tree networks with a different assemblage structure. Interaction frequencies were predicted by the abundance of species, tree size and tree bark texture. Species abundance and tree size also predicted nestedness. Abundance indicated that abundant species interact more frequently; and tree size was an important predictor, since larger-diameter trees hosted more vascular epiphyte species than small-diameter trees. This is one of the first studies analyzing interactions between vascular epiphytes and host trees using a network approach in a subtropical forest, and taking the whole vascular epiphyte assemblage of the sampled community into account.  相似文献   

4.
5.
The diversity and spatial distribution of vascular epiphytes were surveyed in two biotopes (dryland forest and swamp-inundated forest) of the semi-deciduous rain forest area in Cameroon. Eight sites in each biotope were selected, which included 530 individuals of phorophytes in dryland forest and 460 in swamp-inundated forest. A total of 148 epiphyte species were recorded, which showed that semi-deciduous rain forests represent a major source of African-epiphyte diversity. Dryland forest hosted 110 epiphyte species, while the swamp-inundated forest harboured 108. A total of 56 species were found only in the dryland forest and 60 were restricted to the swamp-inundated forest. At family level, Orchidaceae exhibited the highest-species richness within both biotopes. Pteridophytes were more abundant in the swamp-inundated forest. A TWINSPAN analysis of the floristic similarities separated the two investigated forest types very clearly. No significant difference existed between the two biotopes regarding vertical distribution of epiphytes within single trees. The swamp-inundated forests may serve as a refuge for many epiphytes that occur in the outer canopy of the dryland forests, both because they are inherently less vulnerable to timber extraction, and enjoy better protection by legislation.  相似文献   

6.
The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama   总被引:1,自引:0,他引:1  
Aim Information on the community composition, structure, and dynamics of epiphyte vegetation is scarce. A survey of the epiphytes occurring on all individuals of one particular host tree species in a well-studied neotropical research site allowed us a comparison of the epiphyte flora of this tree with the local epiphyte flora, the analysis of spatial distribution patterns and the use of these patterns as indications for changes in time. In the future, our results can be used as a baseline data-set for the direct observation of the long-term dynamics in epiphyte communities. Location The study was conducted on Barro Colorado Island (BCI), Panama. Methods We recorded all individuals of the vascular epiphytes growing on Annona glabra L., a flood-tolerant, multiple-stemmed tree, which is restricted to the shoreline of BCI. Data on tree biometrics, epiphyte species, and epiphyte abundances were collected for more than 1200 trees. Results In total, we encountered almost 15,000 epiphytic individuals in sixty-eight species, corresponding to more than one third of the entire epiphyte flora of Barro Colorado Island. The component species differed strongly in abundance: the four most important species accounted for >75% of all individuals. In most cases, the same four species were also the first to colonize a tree (=phorophyte). Colonization patterns indicated no replacement of early colonizers by late arrivals. Species richness and epiphyte abundances showed a positive correlation with the size and the density of the host trees. All species showed a highly clumped distribution and the physiognomy of epiphyte communities of individual trees was dominated either by one or several of the four most common species or by a set of frequently co-occurring tank bromeliads. Other species were dominant only in exceptional cases. Most species were always rare. A distance effect on community composition was mostly confined to a local scale with an increased similarity in the species assemblage of stems of a tree v. neighbouring trees. Main conclusions The epiphytes on a single small phorophyte species may encompass a surprisingly large proportion of the local epiphyte flora. The observations that most tree crowns are inhabited by a single or only very few species, and that all epiphyte species show highly clumped distributions suggest a predominance of very local dispersal within a tree crown, which is only infrequently interrupted by successful long-distance dispersal between crowns.  相似文献   

7.
The Brazilian Atlantic Forest suffered a severe geographic contraction along the last five centuries that reduced drastically most vascular epiphyte populations. Among the range of man-made matrixes, tree monocultures have the potential to contribute positively to the maintenance of the regional epiphyte diversity. Here, we test the similarity in abundance, richness, and species composition between vascular epiphytic communities established in managed monocultures of exotic and native species with natural communities occurring in neighboring native Araucaria Forest patches. In the São Francisco de Paula National Forest (Rio Grande do Sul state, Brazil), we recorded 62 epiphyte species from 300 phorophytes occurring in 12, one-hectare plots of Araucaria Forest and managed plantations of Pinus, Eucalyptus and Araucaria. Species richness, rarefied richness and abundance were significantly higher in Araucaria Forest in comparison to the exotic stands. Species composition was also substantially differentiated as Araucaria Forest patches harbored a greater number of zoochorous species than those of the exotic stands. Additionally, plantations of Araucaria angustifolia, a native species, sustained more individuals and more species than the exotic plantations. Neither tree height nor DBH explained epiphyte richness; however, both phorophyte diversity and stand age together accounted for 92% of the among-site variation in epiphytic species richness. We conclude that substrate heterogeneity in combination with time available for colonization contribute significantly to beta-diversity of epiphytes in Araucaria forests. However, demographic experimental studies are necessary in order to disentangle the role of substrate quality from metapopulation processes, such as dispersal limitation, at both temporal and spatial scales.  相似文献   

8.
Tropical non-self-supporting plants such as hemiepiphytes and nomadic vines are model organisms for disentangling biotic and environmental correlates which influence their occupancy patterns. We inventoried >4000 individuals from >3000 trees ranging from 1 to 200 cm diameter at breast height (DBH) in a northeastern Amazonian upland forest to address how tree (phorophyte) size, edaphic factors and recruitment strategy influence occupancy, diversity, and compositional patterns of two vascular non-self-supporting plant functional groups. Hemiepiphytes germinate on phorophytes prior to establishing soil connections, whereas nomadic vines initiate their life cycle on the forest floor and subsequently climb phorophytes for crown access, abandoning roots replaced by adventitious connections which may reach the ground. Our results show that larger phorophytes (≥30 cm DBH) supported more species for both hemiepiphytes and nomadic vines. However, nomadic vines' occupancy probabilities saturated faster at smaller stem sizes than that of hemiepiphytes indicating differential preferences for stem sizes among the two functional groups. For smaller phorophytes (<30 cm DBH), soil correlations were stronger with nomadic vines than hemiepiphytes, whereas no significant differences were detected among functional groups in relation to edaphic factors for larger (≥ 30 cm DBH) ones. Finally, a small core group of species showed disproportionately greater abundances among large phorophytes suggesting that autogenic processes differentially promote survivability. Such interactions among phorophyte size and edaphic factors may result from the contrasting ecological requirements of hemiepiphytes and nomadic vines at the recruitment stage, demonstrating the necessity for elaborate demographic-based studies to better understand these complex plant–plant interactions. Abstract in Spanish is available with online material  相似文献   

9.
Question: Vascular epiphytes and hemiepiphytes (E/HE) in neotropical forests account for a large fraction of plant richness, but little is known of how the interplay between phorophyte architectural characteristics and habitat perturbation affect communities of E/HE. Location: Sabal mexicana forests in a coastal area of Veracruz, Mexico. Methods: We compared communities of E/HE on phorophytes with different architectural characteristics – the palm S. mexicana and non‐palm phorophytes – in three environments: conserved sites, perturbed sites and small regenerated forest fragments. We combined traditional (abundance, species richness, similarity and complementarity indices) and more recent (phylogenetic diversity) metrics to describe the communities of E/HE. Results: Overall, we recorded 924 E/HE individuals (nine families, 16 genera and 21 species). The abundance and species richness of E/HE was higher on palms than on non‐palm phorophytes. Abundance‐based complementarities between phorophytes and sites were high. We detected clear changes in community structure of E/HE with habitat perturbation, but there were no effects on the phylogenetic diversity of the E/HE community. Palm phorophytes hosted a more phylogenetically diverse community of E/HE than did non‐palm phorophytes. Conclusions: Palm phorophytes are key elements supporting the conservation of resilient communities of E/HE in S. mexicana forest. Habitat fragmentation has a strong effect on the structure of the E/HE community in S. mexicana forests. Ferns are the group of epiphytes most severely affected by habitat perturbation, but we detected no significant effect on the phylogenetic diversity of the community.  相似文献   

10.
Epiphytism in Colombian Amazonia was described by counting vascular epiphytes in thirty 0.025-ha (5 × 50 m) plots, well-distributed over the main landscape units in the middle Caquetá area of Colombian Amazonia. Each plot was directly adjacent to a 0.1-ha plot at which the species composition of trees and lianas (diameter at breast height (DBH) 2.5 cm) had been recorded 3 years earlier. The purpose of the study was to explore abundance, diversity, and distribution of epiphytes between the principal landscape units. A total of 6129 individual vascular epiphytes were recorded belonging to 27 families, 73 genera, and 213 species (which included 59 morpho-species). Araceae, Orchidaceae, and Bromeliaceae were the most speciose and abundant families. A total of 2763 phorophytes were registered, 1701 (62%) of which with DBH 2.5 cm. About 40–60% of the woody plants with DBH 2.5 cm carried epiphytes, which points at low phorophyte limitation throughout all landscapes. Epiphytism was concentrated on stem bases. Just as trees, epiphyte species assemblages were well associated with the main landscapes. Contrary to trees, however, epiphyte abundance and diversity (species richness, Fishers alpha index) hardly differed between the landscapes. This calls for caution when explanations for distribution and dynamics of tree species are extrapolated to growth forms with a totally different ecology.  相似文献   

11.
Despite the increasing number of studies on lianas, few of them have focused on liana and host-tree (phorophyte) interactions from a network perspective. Most studies found some network structure in other systems, such as plant facilitation and host-epiphyte. However, a recent study found no structure in a small network of liana–phorophyte interactions. Our aim was to investigate the hypothesis that rich, highly diverse systems yield large interaction networks with some structure. If so, networks of liana–phorophyte interactions in highly diverse systems will have one or more of the following structures: compartmentalized, nested or compound. We sampled three highly diverse vegetation formations: a tropical rainforest, a tropical seasonally dry forest, and a woodland savanna, all in southeastern Brazil. We used simulated annealing to test compartmentalization and found no compartment in any of the three networks analyzed. By means of a modified classical temperature index, we found a nested structure in all three sites sampled. We inferred that these nested structures might result from phorophyte characteristics and sequential colonization by different liana species and might promote increased diversity in tropical tree formations. We propose that, according to the system complexity and the different variables associated with site and liana–phorophyte characteristics, a network may have a structure, which arises in more complex systems. Since we have investigated highly diverse systems with large networks, nestedness could be clearly detected in our study.  相似文献   

12.
Diversity of epiphytes is associated with niche partitioning, through vertical strata and host preferences. However, abundance of substrate offered by hosts differs between vertical strata, misleading if epiphytes prefer a stratum or are randomly distributed. In a tropical dry forest of San Andres de la Cal Morelos, central Mexico, we tested the null hypothesis, that epiphytes follow the abundance of the substrate, rather than showing preference for a particular vertical stratum, and tested whether microclimatic variables, seed germination and seedling survival match with observed epiphyte distribution. Our data show that epiphytes could be randomly distributed inside some host; but in some host species, certain structures presented either a deficit or an excess of all, atmospheric, or tank epiphytes. In the hosts Bursera copallifera and Bursera glabrifolia, distribution of epiphytes was biased towards the upper strata, with a deficit of epiphytes in the lower strata. In Conzattia multiflora, Sapium macrocarpum and Ipomoea pauciflora, epiphyte distribution was biased towards the lower strata. Vertical gradation of light, seed germination and seedling survival did not generally match with epiphyte distribution and did not support the notion that the microclimatic gradient governs the vertical distribution of epiphytes. Our data indicate that vertical distribution of epiphytes in such tropical dry forests is mainly driven by the distribution of the structures, which apparently influence dispersion of the seeds and by the lifespan of branches, which allow the concentration of epiphytes in the stratum that optimizes seed capture and the clonal growth of epiphytes.  相似文献   

13.
Species interact in many ways. Potentially, the type of interaction, e.g. mutualistic, commensalistic or antagonistic, determines the structure of interaction networks, but this remains poorly tested. Here we investigate whether epiphytes and wood decomposers, having different types of interaction with their host trees, show different network properties. We also test whether the traits of host trees affect network architecture. We recorded presence/absence of organisms colonizing trees, and traits of host trees, in 102 forest plots. Epiphytic bryophytes (64 species) and lichens (119 species) were recorded on c. 2300 trees. Similarly, wood-inhabiting fungi (193 species) were recorded on c. 900 dead wood items. We studied the patterns of species aggregation on host trees by comparing network metrics of species specialization, nestedness and modularity. Next, we tested whether the prevalence of interactions was influenced by host tree traits. We found non-random interaction patterns between host trees and the three ecological groups (bryophytes, lichens and fungi), with nested and modular structures associated with high host specificity. A higher modularity and number of modules was found for fungi than for epiphytes, which is likely related to their trophic relationship with the host plant, whilst the stronger nestedness for epiphytes is likely reflecting the commensalistic nature of their interactions. For all three groups, the difference in prevalence of interaction across modules was determined by a gradient in interaction intimacy (i.e. host tree specialization), driven by host tree traits. We conclude that the type of interaction with host trees defines the properties of each network: while autotrophic epiphyte networks show similar properties to mutualistic networks, the heterotrophic wood decomposers show similarity with antagonistic networks.  相似文献   

14.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

15.
The composition and distribution of vascular epiphytes were studied in two 1‐ha plots in the KNUST Botanic garden, Ghana. One‐hectare plot each was randomly set up in secondary and cultivated forests for the identification and enumeration of trees and shrubs (≥10 cm dbh), and epiphytes. Each tree was carefully examined, noting the presence, positions and life‐forms of all epiphytes. Twenty‐nine epiphyte (29) species belonging to fourteen genera and eleven families were identified in the study. These were hosted by 48 tree species and occurred in three life‐forms: hemi‐epiphytes (45%), casual epiphytes (45%) and true epiphytes (10%). The vascular epiphyte species made up 25.7% of all the identified plant species (excluding herbs and climbers) encountered. Host species (P < 0.001), habitat (P = 0.001) and their interaction (P < 0.001) had strong effects on epiphyte composition in the forests. Moraceae was the most dominant family (44.8%), while Nephrolepis undulata J. Sm. and N. biserrata (Sw.) Scott. were the commonest species of epiphytes. In terms of vertical distribution, most epiphytes were located on the trunk, while a few occurred in the canopy.  相似文献   

16.
We studied species richness, composition, and vertical distribution of vascular epiphytes at two sites in the Bolivian Andes. To account for the epiphyte flora on understory trees, epiphytes on shrubs and small trees were sampled in 20 × 20 m2 subplots around each sampled canopy tree; this understory zone U is introduced as an addition to the well-established five vertical Johansson tree zones. More than 20% of about 500 species recorded were found only in the understory subplots, including ca. 40% of aroids, 35%–40% of piperoids, and 25%–30% of ferns. Habitat generalists (occurring in three or more zones) were most common, contributing about 50% of all species, specialists (occurring only in two zones, or in three continuous ones) 34%–42%, and hemiepiphytes 6%–16%. Canopy epiphytes (occurring > 90% in tree zones Z3–5) were mainly represented by orchids and ferns, many with special adaptations to drought stress such as pseudobulbs, succulence, and poikilohydry. Trunk epiphytes ( > 90% in understory and tree zones Z1–2) reached highest relative species numbers among piperoids and ferns. Most hemiepiphytes were also trunk epiphytes, due to their characteristic growth pattern, and included mainly aroids. The vertical distribution of epiphytes within a tree is determined by several microenvironmental gradients, with light intensity, wind speed, and air temperature increasing and air humidity decreasing from the ground level to the canopy.  相似文献   

17.
Aim This study aims to assess the impact of climate change on forests and vascular epiphytes, using species distribution models (SDMs). Location Island of Taiwan, subtropical East Asia. Methods A hierarchical modelling approach incorporating forest migration velocity and forest type–epiphyte interactions with classical SDMs was used to model the responses of eight forest types and 237 vascular epiphytes for the year 2100 under two climate change scenarios. Forest distributions were modelled and modified by dominant tree species’ dispersal limitations and hypothesized persistence under unfavourable climate conditions (20 years for broad‐leaved trees and 50 years for conifers). The modelled forest projections together with 16 environmental variables were used as predictors in models of epiphyte distributions. A null method was applied to validate the significance of epiphyte SDMs, and potential vulnerable species were identified by calculating range turnover rates. Results For the year 2100, the model predicted a reduction in the range of most forest types, especially for Picea and cypress forests, which shifted to altitudes c. 400 and 300 m higher, respectively. The models indicated that epiphyte distributions are highly correlated with forest types, and the majority (77–78%) of epiphyte species were also projected to lose 45–58% of their current range, shifting on average to altitudes c. 400 m higher than currently. Range turnover rates suggested that insensitive epiphytes were generally lowland or widespread species, whereas sensitive species were more geographically restricted, showing a higher correlation with temperature‐related factors in their distributions. Main conclusions The hierarchical modelling approach successfully produced interpretable results, suggesting the importance of considering biotic interactions and the inclusion of terrain‐related factors when developing SDMs for dependant species at a local scale. Long‐term monitoring of potentially vulnerable sites is advised, especially of those sites that fall outside current conservation reserves where additional human disturbance is likely to exacerbate the effect of climate change.  相似文献   

18.
海南岛热带天然针叶林附生维管植物多样性和分布   总被引:2,自引:0,他引:2       下载免费PDF全文
作为热带林中一个重要的特征性组分, 附生维管植物对于维持热带森林的物种多样性及其生态系统功能均具有重要作用。该文首次系统地报道了热带天然针叶林中的附生维管植物多样性和分布特征。以海南岛霸王岭国家级自然保护区保存完好的热带天然针叶林(我国唯一较大面积分布的南亚松(Pinus latteri)天然林)中的附生维管植物为研究对象, 通过样带调查(共设置12个10 m × 50 m的样带, 记录每个样带内胸径(DBH) ≥ 5 cm树木上附生维管植物的物种名称、株数及附生高度), 分析附生维管植物的物种多样性和空间分布特征。结果表明: 1)热带针叶林0.6 hm 2面积内共有附生维管植物769株, 分属于7科17属27种, 附生兰科植物和萝摩科植物为优势类群; 2)附生维管植物在水平方向上呈现出聚集分布; 3)附生维管植物在垂直方向上, 在中等高度层次(10-20 m)分布最多, 在下层(0-5 m)也有较多的分布; 4)少数附生维管植物对南亚松表现出一定的选择性, 如华南马尾杉(Phlegmariurus fordii)、玫瑰毛兰(Eria rosea)、眼树莲(Dischidia chinensis)和铁草鞋(Hoya pottsii)等; 5)附生维管植物的物种丰富度及多度与宿主胸径均存在显著的正相关关系。  相似文献   

19.
The vertical distribution of the density and richness of vascular and nonvascular epiphytes on some mature trees was studied in two 1 km2 plots in Miombo Woodland in Zambia (n = 20) and the Democratic Republic of Congo (D.R.C.) (n = 20). The aim was to assess the diversity of arboreal epiphytes and to investigate general distribution patterns of epiphytes along some individual mature phorophytes. Species richness was low on both sampling sites (24 in D.R.C. and nineteen in Zambia) with Orchidaceae being the richest family. Epiphyte density for both sampling plots was high with 92% of the available surface area being occupied. Lichens showed the highest density of 67.2% followed by moss 18.4%, orchids 7.9% and ferns 6.5%. Species richness and density showed a clear zonation within the canopy. Richness and density peaked in the upper and mid‐canopy and was positively correlated with available surface area, branch aspect and to some extent bark pH, but not with bark texture. This study demonstrated that tree canopies can harbour a diversity of epiphyte species, and the findings constitute baseline information in such environments.  相似文献   

20.
In the tropics, corticolous lichen richness and cover tend to increase from the trunk base to the top of the crown of trees. In this study we calculated the total beta diversity of the lichen community along a vertical gradient on Quercus laurina in Mexican cloud forest. By comparing the richness and cover of the lichens by zone, we show that foliose and fruticose lichens are a minor component of the total lichen species richness, but have a higher cover than the crustose lichens. Five zones were identified along each phorophyte (n = 15) with a diameter at breast height >40 cm. A total of 92 species were identified. Of these, 38% were found only in a single zone, 51% were shared between the different zones and 11% occurred across all zones. Species richness and cover increased from the lowest to the highest zones of the phorophytes. Dissimilarity in species composition between the zones could be explained by species replacement. An indicator species analysis revealed that only a few species, e.g. Hypotrachyna vexans, H. cf. sublaevigata and Ramalina cf. sinaloensis prefer a particular zone. The results show that the lichen community associated with Quercus laurina phorophytes is highly diverse and suggest that species richness and cover are related to the zone and the various growth forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号