首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Development of effective trapping tools for forest pests and evaluating the key components of these tools is necessary to locate early‐stage infestations and develop management responses to them. Agrilus planipennis Fairmaire (emerald ash borer) is an introduced pest of ash (Fraxinus spp. L.) in North America. The effectiveness of different trap and lure combinations were tested in areas with low and high density populations of A. planipennis. At low density sites, purple prism traps outperformed green traps and girdled ash trap trees in capture rates (adults per day) and rates of detection of A. planipennis. Also, manuka oil lures, used as a standard lure in a national survey programme, captured higher rates of A. planipennis than did previous standards of girdled ash trap trees. There was no logistic relationship between the detection of A. planipennis on a trap and the diameter of the ash tree from which the trap was suspended, possibly because of the use of artificial lures with these traps. There was also no difference in the mean number of A. lanipennis captured per day between ash species and between vigour rating of ash associated with the traps. However, traps placed in open grown and dominant trees captured more beetles than traps placed in lower canopy class trees. At sites defined as low and high density, there was no difference in the larval density per cm3 of phloem. This suggests that exposure time to A. planipennis has been shorter at those low density sites. By exploiting the trap and tree characteristics that improve A. planipennis capture rates and detection efficacy, there can be future improvement in management of this pest. If detection can occur before infested ash trees exhibit signs and symptoms, there may be a potential for reducing the mortality of ash within stands.  相似文献   

2.
The invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a major pest of ash trees, Fraxinus spp., in its introduced range in North America. Field studies were conducted to quantify the efficacy of traps baited with kairomone and pheromone lures for early detection of A. planipennis infestation. A trapping experiment demonstrated that green traps baited with the kairomone (3Z)‐hexenol detected at least one adult A. planipennis in 55.3% of plots with ‘nil to low’‐density infestations and in 100% of plots with ‘moderate to high’‐density A. planipennis infestations. Mean trap captures increased significantly with increasing infestation density. In terms of the optimal number of traps per plot, when one (3Z)‐hexenol‐baited trap was placed per plot, the trap detected populations in 62% of the plots with ‘low to moderate’‐density infestations through branch sampling. Detectability was increased to 82% when two traps were placed per plot. Finally, addition of female‐produced (3Z)‐lactone pheromone to traps significantly increased detection rates at both the trap and plot level, as compared with traps baited with the host volatile, (3Z)‐hexenol, alone (88 vs. 60%, respectively). Our results are the first to demonstrate the efficacy of baited green sticky traps for detecting low‐density A. planipennis infestations, particularly when the (3Z)‐lactone pheromone is used. This combination is therefore recommended for development of early‐detection protocols against A. planipennis.  相似文献   

3.
Using sticky traps, we compared the efficacy of chemical and visual lures, both alone and in combination, for improving the detection of populations of the emerald ash borer (EAB), Agrilus planipennis. Ash leaflets to which EAB visual decoys were pinned and coated with sticky material were able to trap EAB with as high a rate of detection as large sticky visually unbaited ‘prism traps’ currently used in wide‐scale EAB surveillance programs in North America, in a high‐density area. Both the sticky leaf traps and prism traps captured more EAB when a point source of plant odours, either manuka or phoebe oil, was deployed with the trap. For the sticky leaf traps, the shape of the EAB visual decoy lure was found to be important in optimizing the detection rate. Either an entire dead beetle or else two elytra placed side by side to mimic a resting beetle resulted in optimal trap performance. When two elytra were placed end to end or else other body parts were deployed, the traps lost their efficacy. Small green plastic surfaces to which EAB visual decoys were pinned were found to be fairly good substitutes for live ash leaflets, but the rate of beetle detection was reduced significantly from that of the ash leaflet plus EAB decoy. Throughout all experiments, a clear male bias occurred in sticky leaf traps when EAB visual decoys were placed on the traps. The implications of these findings for developing new trapping designs for EAB and other forest buprestids are discussed.  相似文献   

4.
In this publication, we review the biology, ecology, invasion history, impacts and management options of Emerald ash borer (EAB) Agrilus plannipennis, with a particular focus on its invasion in Europe. Agrilus planipennis (EAB) is a wood‐boring beetle native to East Asia. Having caused massive damages on ash species in North America in the last decades, it was first recorded in Europe in 2003 in Russia (Moscow). All ash (Fraxinus) species native to Europe and North America are known to be susceptible to EAB attacks, which cause high tree mortality even among formerly healthy trees. Recorded expansion rates are between 2.5 and 80 km/year in North America and between 13 and 41 km/year in European Russia. Given current expansion rates, EAB is expected to reach Central Europe within 15–20 years. A combination of mechanical, biological and chemical control and phytosanitary measures may reduce its impact, which nevertheless most likely will be substantial. There is an urgent need to identify native enemies in Europe, to test suitable biocontrol agents and to develop early detection and management measures. Although it is obvious that EAB will become a major pest in Europe, early and dedicated response will likely be able to reduce the level of ash mortality, and thus improve the opportunity for long‐term survival of ash as an important component in European forests.  相似文献   

5.
Woodborers in the Agrilus genus (Coleoptera: Buprestidae) pose high invasiveness risk as indicated by the recent invasion and continental spread of emerald ash borer, and the associated threat to ash resources in North America. In that context, development of detection tools for potentially invasive Agrilus spp. is a research priority. Experiments carried out in 2013 in Slovakian beech and poplar forests evaluated the attraction of multiple Agrilus species to green and purple sticky prism traps baited with various lures [blank, cubeb oil, (Z)‐3‐hexenol]. The two most abundant species were Agrilus viridis L. in beech (Fagus spp.) forest (146 adults, >95% of which were females) and Agrilus convexicollis Redtenbacher in poplar (Populus spp.) forest (158 adults, two‐thirds of them males). The two species exhibited opposite responses to color: purple traps attracted 2–3× more adult A. viridis than green traps, whereas most (>95%) specimens of A. convexicollis were captured on green traps. Volatile baits did not influence captures of adults for either species. The introduction and establishment of A. viridis in North America is of particular concern owing to its feeding niche (primary pest that can attack healthy trees), large body size, and high level of polyphagy (>10 genera of host trees). Additional experiments conducted in beech forests in 2014 found purple prism traps more attractive to female A. viridis than green prism traps, especially those baited with cubeb oil. No analysis was conducted for males because of their low abundance. Female A. viridis flew earlier in 2013 than in 2014, but neither their body size nor fecundity varied between years. In both years, large females had more eggs in their abdomen than small females, and the number of eggs steadily declined over time, which suggests that female A. viridis are reproductively mature at emergence.  相似文献   

6.
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a major pest of ash trees, Fraxinus spp. (Oleaceae), in North America. This study investigated the timing of reproductive development in female beetles and the influence of female reproductive maturity on attraction to host volatiles. Based on dissections of females of increasing age, females with access to males for mating, and thus presumed mated, developed mature eggs only after 18–24 days. In contrast, female beetles reared without access to males, and thus unmated, did not develop mature eggs at any age. Chemical analysis of cuticular hydrocarbons detected the contact sex pheromone, 9‐methyl‐pentacosane, in cohorts of females which were 8–9 days old and older, supporting previous research that this compound signals sexual maturity to males. Results from field‐trapping bioassays demonstrated that stage of female reproductive maturity influenced their attraction to host volatiles: females caught on traps baited with foliar volatiles contained eggs and ovarioles that were significantly less developed than those on traps baited with bark sesquiterpenes. However, our results revealed that females with immature stages of ovarioles and undeveloped eggs, such as those observed in unmated females, were rarely ever caught on traps baited with either of the host volatile lures. Further research on host compounds attractive to immature females is critical for early detection and possible control of A. planipennis populations during the extended pre‐oviposition period.  相似文献   

7.
  1. The emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive woodboring beetle native to northeastern Asia that continues to expand its range within North America and European Russia. The insect reproduces within and kills most North American species of ash Fraxinus spp.
  2. Because both the adult and larval life stages of EAB are difficult to detect prior to development of tree symptoms, much work has focused on quantifying spread and clarifying the potential movement pathways to improve early detection and monitoring strategies.
  3. In the present study, we retrospectively analyzed county‐level infestations of emerald ash borer in the state of Iowa, U.S.A., subsequent to the initial detection of EAB in 2010. Visual data analysis had suggested that new infestations were not in accordance with the expected patterns of establishment along roads, near campgrounds or by large population centres.
  4. We found a positive correlation between the establishment and detection of EAB in Iowa counties and the length of railroads in each county. To our knowledge, this is the first statistically significant association between rail pathways and the spread of EAB on the North American continent.
  相似文献   

8.
Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites with very low A. planipennis densities, more A. planipennis were captured on baited double-decker traps than on other traps and a higher percentage of the baited double-decker traps captured beetles than any other trap design. In all 3 yr, peak A. planipennis activity occurred during late June to mid-July, corresponding to 800-1200 growing degree-days base 10 degrees C (DD10). Nearly all (95%) beetles were captured by the end of July at approximately 1400 DD10.  相似文献   

9.
Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of four 50- by 50-m cells. Green ash trees (Fraxinus pennsylvanica Marshall) were inventoried by diameter class and ash phloem area was estimated for each cell. One trap type was randomly assigned to each cell in each block. Because initial sampling showed that A. planipennis density was extremely low, infested ash logs were introduced into the center of the site. In total, 87 beetles were captured during the summer. Purple double-decker traps baited with a blend of ash leaf volatiles, Manuka oil, and ethanol captured 65% of all A. planipennis beetles. Similarly baited, green double-decker traps captured 18% of the beetles, whereas sticky bands on girdled trees captured 11% of the beetles. Purple traps baited with Manuka oil and suspended in the canopies of live ash trees captured only 5% of the beetles. At least one beetle was captured on 81% of the purple double-decker traps, 56% of the green double-decker traps, 42% of sticky bands, and 25% of the canopy traps. Abundance of ash phloem near traps had no effect on captures and trap location and sun exposure had only weak effects on captures. Twelve girdled and 29 nongirdled trees were felled and sampled in winter. Current-year larvae were present in 100% of the girdled trees and 72% of the nongirdled trees, but larval density was five times higher on girdled than nongirdled trees.  相似文献   

10.
The emerald ash borer, Agrilus planipennis, is a serious invasive pest of North American ash (Fraxinus) trees. In captivity, mating is initiated by beetles at least 10 days old, and appears to be based simply on random contact with a member of the opposite sex. In the field, male A. planipennis search the tree during flight, and attempt to copulate with dead beetles of both sexes pinned to leaves, after descending rapidly straight down onto the pinned beetles from a height of from 30 to 100 cm. All evidence suggests that males find potential mates using visual cues. Equal numbers of feral males approach all ‘dummy’ beetles; however, considerably more time is spent attempting copulation with dead females rather than males, suggesting a contact chemical cue. Sticky traps prepared from dead, pinned EAB capture crawling insects as well as male A. planipennis, at a rate similar to that at which small purple sticky traps of similar overall area capture crawling insects and both sexes of feral EAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号