首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modern dolomite stromatolites are found in Cock Soda Lake (Kulunda Steppe) at a salinity of 100–200 g/L and pH of 10. The mineralogical analysis has revealed the presence in the stromatolites of Ca?Mg-carbonates of various compositions. The organisms–edificators of the phototrophic community developing in the lake are determined. They are identified as a part of the mineralized biota (cyanobacteria, bacteria, and eukaryotic alga Ctenocladus circinnatus). Morphological and ultrastructural features of exopolysaccharides secreted by cyanobacteria and bacteria dominant in the phototrophic community are characterized. It is shown that polysaccharides secreted primarily by cyanobacteria have the utmost importance for the formation of stromatolites in Petukhovskoe Soda Lake.  相似文献   

2.
A laboratory model of a cyano-bacterial mat with mineral layers of carbonates was used to examine the dynamics of the transformation of calcium-magnesium carbonate under the conditions of a soda lake. The activity of various organisms of the cyanobacterial community results in conditions under which the Ca-Mg carbonate precipitate undergoes changes. The crystal lattice of the initial carbonate is restructured; its mineralogical composition changes depending on the conditions of the mat. In magnesium calcites, which are formed under such low-temperature conditions, a rudimentary cation adjustment can occur with the formation of dolomite domains. These experiments confirm the hypothesis that the dolomite found in stromatolites is of a secondary origin and can be formed in the course of transformation of Ca-Mg carbonates under alkaline conditions in an alkaliphilic cyanobacterial community.  相似文献   

3.
A laboratory model of a cyano-bacterial mat with mineral layers of carbonates was used to examine the dynamics of the transformation of calcium-magnesium carbonate under the conditions of a soda lake. The activity of various organisms of the cyanobacterial community results in conditions under which the Ca-Mg carbonate precipitate undergoes changes. The crystal lattice of the initial carbonate is restructured; its mineralogical composition changes depending on the conditions of the mat. In magnesium calcites, which are formed under such low-temperature conditions, a rudimentary cation adjustment can occur with the formation of dolomite domains. These experiments confirm the hypothesis that the dolomite found in stromatolites is of a secondary origin and can be formed in the course of transformation of Ca-Mg carbonates under alkaline conditions in an alkaliphilic cyanobacterial community.  相似文献   

4.
In this study, we demonstrate that sulphate‐reducing bacteria induce anoxic low‐temperature Ca‐dolomite formation both in situ in Lagoa Vermelha and Brejo do Espinho, two neighbouring, dolomite‐precipitating hypersaline lagoons in Brazil, and in laboratory culture experiments. The metabolic activity of sulphate‐reducing bacteria facilitates dolomite formation under anoxic conditions, as demonstrated with experiments using dialysis bags. Overall changes in the chemical conditions of the medium exclusively, without the presence of bacteria, did not result in carbonate precipitation. Only pure cultures of metabolizing sulphate‐reducing bacteria induced Ca‐dolomite and high Mg‐calcite precipitates, indicating that the carbonate nucleation takes place in the locally changed microenvironment around the sulphate‐reducing bacterial cells. Not all pure strains, however, produced Ca‐dolomite under similar conditions, suggesting that the bacterial metabolism, activity and the rate of mineral precipitation have an influence on the type of carbonate formed.  相似文献   

5.
In modern stromatolites, mineralization results from a complex interplay between microbial metabolisms, the organic matrix, and environmental parameters. Here, we combined biogeochemical, mineralogical, and microscopic analyses with measurements of metabolic activity to characterize the mineralization processes and products in an emergent (<18 months) hypersaline microbial mat. While the nucleation of Mg silicates is ubiquitous in the mat, the initial formation of a Ca‐Mg carbonate lamina depends on (i) the creation of a high‐pH interface combined with a major change in properties of the exopolymeric substances at the interface of the oxygenic and anoxygenic photoautotrophic layers and (ii) the synergy between two major players of sulfur cycle, purple sulfur bacteria, and sulfate‐reducing bacteria. The repetition of this process over time combined with upward growth of the mat is a possible pathway leading to the formation of a stromatolite.  相似文献   

6.
Abstract

Modern hydrated Mg rich stromatolites are actively growing along the shallow shorelines of Lake Salda (SW Turkey). An integrated approach involving isotopic, mineralogical, microscopic, and organic/geochemical techniques along with culture-independent molecular methods were applied to various lake samples to assess the role of microbial processes on stromatolite formation. This study further explores the biosignature preservation potential of fossil stromatolites by comparing with textures, lipid profiles and isotopic composition of the modern stromatolites. Similar lipid profile and δ13C isotope values in active and fossil stromatolites argue that CO2 cycling delicately balanced between photosynthetic and heterotrophic (aerobic) activity as in the active ones may have regulated stromatolite formation in the lake. A decrease in the exopolymeric substances (EPS) profile of the mat and concurrent hydromagnesite precipitation imply a critical role for EPS in the formation of stromatolite. Consistently, a discrete, discontinuous lamination and clotted micropeloidal textures with cyanobacterial remnants in the fossil stromatolites likely refer to partial degradation of EPS, creating local nucleation sites and allowing precipitation of hydrated Mg minerals and provide a link to the active microbial mat in the modern stromatolites. Our results for the first time provide strong evidence for close coupling of cyanobacterial photosynthesis and aerobic heterotrophic respiration on hydromagnesite textures involved in the stromatolite formation of Lake Salda. The creation of photosynthesis induced high-pH conditions combined with a change in the amount and properties of the EPS and the repetition of these processes over time seems to be a possible pathway for stromatolite growth in the lake. Understanding these microbial symbioses and their mineralized records may provide new insights on the formation mechanism of Mg-rich carbonates not only for terrestrial geological records but also for planetary bodies like Mars, where hydrated Mg-carbonate deposits have been identified in possible paleolake deposits at Jezero crater, the landing site of the NASA Mars 2020 rover.  相似文献   

7.
Dolomite (CaMg(CO3)2) precipitation is kinetically inhibited at surface temperatures and pressures. Experimental studies have demonstrated that microbial extracellular polymeric substances (EPS) as well as certain clay minerals may catalyse dolomite precipitation. However, the combined association of EPS with clay minerals and dolomite and their occurrence in the natural environment are not well documented. We investigated the mineral and textural associations within groundwater dolocrete profiles from arid northwest Australia. Microbial EPS is a site of nucleation for both dolomite and authigenic clay minerals in this Late Miocene to Pliocene dolocrete. Dolomite crystals are commonly encased in EPS alveolar structures, which have been mineralised by various clay minerals, including montmorillonite, trioctahedral smectite and palygorskite-sepiolite. Observations of microbial microstructures and their association with minerals resemble textures documented in various lacustrine and marine microbialites, indicating that similar mineralisation processes may have occurred to form these dolocretes. EPS may attract and bind cations that concentrate to form the initial particles for mineral nucleation. The dolomite developed as nanocrystals, likely via a disordered precursor, which coalesced to form larger micritic crystal aggregates and rhombic crystals. Spheroidal dolomite textures, commonly with hollow cores, are also present and may reflect the mineralisation of a biofilm surrounding coccoid bacterial cells. Dolomite formation within an Mg-clay matrix is also observed, more commonly within a shallow pedogenic horizon. The ability of the negatively charged surfaces of clay and EPS to bind and dewater Mg2+, as well as the slow diffusion of ions through a viscous clay or EPS matrix, may promote the incorporation of Mg2+ into the mineral and overcome the kinetic effects to allow disordered dolomite nucleation and its later growth. The results of this study show that the precipitation of clay and carbonate minerals in alkaline environments may be closely associated and can develop from the same initial amorphous Ca–Mg–Si-rich matrix within EPS. The abundance of EPS preserved within the profiles is evidence of past microbial activity. Local fluctuations in chemistry, such as small increases in alkalinity, associated with the degradation of EPS or microbial activity, were likely important for both clay and dolomite formation. Groundwater environments may be important and hitherto understudied settings for microbially influenced mineralisation and for low-temperature dolomite precipitation.  相似文献   

8.
We investigated the precipitation of carbonate and phosphate minerals by 19 species of moderately halophilic bacteria using media with variable Mg(2+)/Ca(2+) ratios. The precipitated minerals were calcite, magnesium (Mg) calcite, and struvite (MgNH(4)PO(4) x 6H(2)O) in variable proportions depending on the Mg(2+)/Ca(2+) ratio of the medium. The Mg content of the Mg-calcite decreased with increasing Ca(2+) concentration in the medium. According to the saturation indices, other minerals could also have precipitated. We observed important differences between the morphology of carbonate and phosphate, which may help us to recognize these minerals in natural systems. We studied the growth and pH curves of four bacteria in media specific for carbonate and struvite precipitation. We consider the biomineralization processes that produce carbonate and phosphate minerals, and propose a hypothesis for the lack of struvite in natural environments and ancient rocks.  相似文献   

9.
Microbial lithification in marine stromatolites and hypersaline mats   总被引:5,自引:0,他引:5  
Lithification in microbial ecosystems occurs when precipitation of minerals outweighs dissolution. Although the formation of various minerals can result from microbial metabolism, carbonate precipitation is possibly the most important process that impacts global carbon cycling. Recent investigations have produced models for stromatolite formation in open marine environments and lithification in shallow hypersaline lakes, which could be highly relevant for interpreting the rock record and searching for extraterrestrial life. Two factors that are controlled by microbial processes and physicochemical characteristics determine precipitation: exopolymeric substances and the saturation index, the latter being determined by the pH, {Ca(2+)} and {CO(3)(2-)}. Here, we evaluate community metabolism in microbial mats and hypothesize why these organosedimentary biofilms sometimes lithify and sometimes do not.  相似文献   

10.
Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence.  相似文献   

11.
Stromatolites are cited as some of the earliest evidence for life on Earth, but problems remain in reconciling the paucity of microfossils in ancient carbonate examples with the abundance of microbes that help construct modern analogues. Here, we trace the mineralisation pathway of filamentous cyanobacteria within stromatolites from Lake Thetis, Western Australia, providing new insights into microfossil preservation in carbonate stromatolites. Lake Thetis cyanobacteria exhibit a spectrum of mineralisation processes that include early precipitation of Mg‐silicates, largely controlled by the morphochemical features of the cyanobacteria, followed by aragonite formation that is inferred to be driven by heterotrophic activity. Fossilised cyanobacteria with high‐quality morphological preservation are characterised by a significant volume of authigenic Mg‐silicates, which have preferentially nucleated in/on extracellular organic material and on cell walls, and now replicate the region once occupied by the cyanobacterial sheath. In such specimens, aragonite is restricted to the outer sheath margin and parts of the cell interior. Cyanobacteria that display more significant degradation appear to possess a higher ratio of aragonite to Mg‐silicate. In these specimens, aragonite forms micronodules in the sheath zone and is spatially associated with the inferred remains of heterotrophic bacteria. Aragonite also occurs as an advancing front from the outer margin of the sheath where it is commonly intergrown with Mg‐silicates. Where there is no evidence of Mg‐silicates within filaments, the fidelity of microfossil preservation is poor. In these cases, individual filaments may no longer be visible under light microscopy, and little organic material remains, but filament traces remain detectable using electron microscopy due to variations in aragonite texture. These data provide further evidence that authigenic silicate minerals play a crucial role in the fossilisation of micro‐organisms; in their absence, carbonate crystal growth potentially mediated by heterotrophic microbial decay may largely obliterate morphological evidence for life within stromatolites, although mineralogical traces may still be detectable using electron microscopy.  相似文献   

12.
Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.  相似文献   

13.
The microbial role in the formation of the cortex of low‐Mg calcite freshwater ooids in western part of Lake Geneva in Switzerland has been suggested previously, but not demonstrated conclusively. Early work mostly concentrated in hypersaline milieus, and hence little is known about their genesis in freshwater environments. We designed an in situ experiment to mimic the natural process of low‐Mg calcite precipitation. A special device was placed in the ooid‐rich bank of the lake. It contained frosted glass (SiO2) slides, while quartz (SiO2) is the most abundant mineral composition of ooid nuclei that acted as artificial substrates to favour microbial colonization. Microscopic inspection of the slides revealed a clear seasonal pattern of carbonate precipitates, which were always closely associated with biofilms that developed on the surface of the frosted slides containing extracellular polymeric substance, coccoid and filamentous cyanobacteria, diatoms and heterotrophic bacteria. Carbonate precipitation peaks during early spring and late summer, and low‐Mg calcite crystals mostly occur in close association with filamentous and coccoid cyanobacteria (e.g. Tolypothrix, Oscillatoria and Synechococcus, Anacystis, respectively). Further scanning electron microscope inspection of the samples revealed low‐Mg calcite with crystal forms varying from anhedral to euhedral rhombohedra, depending on the seasons. Liquid cultures corroborate the in situ observations and demonstrate that under the same physicochemical conditions the absence of biofilms prevents the precipitation of low‐Mg calcite crystals. These results illustrate that biofilms play a substantial role in low‐Mg calcite ooid cortex formation. It further demonstrates the involvement of microbes in the early stages of ooid development. Combined with ongoing microbial cultures under laboratory‐controlled conditions, the outcome of our investigation favoured the hypothesis of external microbial precipitation of low‐Mg calcite as the main mechanism involved in the early stage of ooid formation in freshwater Lake Geneva.  相似文献   

14.
The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria–carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times.  相似文献   

15.
Recently, there is strong interest on microbe-mineral interactions. This is related also to recent expanded knowledges on extremely severe environments in which microbes live. Interaction between microbes and minerals contains biomineralization processes. Varieties of biomineralization products are found not only in various geologic materials and processes in the earth's history but also in present surface environments. Some hot springs represent such environments similar to those of unique and extremely severe environments for life. In this short review, the author briefly shows some examples of biomineralizations at some hot springs and mineral springs, Japan. In such environments, iron ore was formed and some varieties of growing stromatolites were found. The varieties of stromatolite are siliceous, calcic and manganese types. Cyanobacteria and the other bacteria are related to form the stromatolite structure. In the Gunma iron ore, sedimentary iron ores were mineralogically described in order to evaluate the role of microorganisms and plants in ore formation. The iron ore is composed of nanocrystalline goethite. Algal fossils are clearly preserved in some ores. Various products of biomineralization are found in the present pH 2-3, Fe2(+)- and SO4(2-)-rich streams. Bacterial precipitation had variations from amorphous Fe-P-(S) precipitates near the outlet of mineral spring, to Fe-P-S precipitates and to Fe-S-(P) precipitates. Mosses and green algae are also collecting Fe precipitates in and around the living and dead cells. The Gunma Iron Ore can be said as Biologically Induced Iron Ore. At Onikobe and Akakura hot springs, growing stromatolites of siliceous and calcareous types, were found, respectively. At Onikobe, The stromatolites grow especially near the geyser. Cyanobacterial filaments in stromatolite were well preserved in the siliceous and calcic stromatolites. The filaments oriented in two directions which form the layered structures were found. At Yunokoya hot spring, black and brittle stromatolitic structures which were composed of amorphous Mn minerals are growing. The form of these structures are hemispherical. Many bacteria that were coated with amorphous Mn minerals were found on these structures. Furthermore, Precambrian (Proterozoic : Wittenoom-Chichester region, western Australia) manganese stromatolite was briefly shown in comparison. The black stromatolite has been clarified to be composed of todorokite. Small spotty and donuts-like shaped todorokite aggregates which are very similar to biologically induced Mn-precipitates were found in massive dolomite layers.  相似文献   

16.
Soda lakes are one of the most stable naturally occurring alkaline and saline environments, which harbor abundant microorganisms with diverse functions. In this study, culture-independent molecular methods were used to explore the genetic diversity of glycoside hydrolase (GH) family 10 and GH11 xylanases in Lake Dabusu, a soda lake with a pH value of 10.2 and salinity of 10.1%. A total of 671 xylanase gene fragments were obtained, representing 78 distinct GH10 and 28 GH11 gene fragments respectively, with most of them having low homology with known sequences. Phylogenetic analysis revealed that the GH10 xylanase sequences mainly belonged to Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes and Verrucomicrobia, while the GH11 sequences mainly consisted of Actinobacteria, Firmicutes and Fungi. A full-length GH10 xylanase gene (xynAS10-66) was directly cloned and expressed in Escherichia coli, and the recombinant enzymes showed high activity at alkaline pH. These results suggest that xylanase gene diversity within Lake Dabusu is high and that most of the identified genes might be novel, indicating great potential for applications in industry and agriculture.  相似文献   

17.
In the present study, laboratory precipitation experiments using similar water chemistry and two different bacterial cultures from Lake Ac?göl sediments, a hypersaline lake in Turkey, were performed to reproduce mineral assemblages similar to those found in the lake. Two different bacterial cultures induce various calcium/magnesium carbonates precipitation under all the experimental conditions (solid vs. liquid): Hydromagnesite, dypingite, huntite, monohydrocalcite, and aragonite. The geochemical program PHREEQC was used to calculate the mineral saturation indexes in the cultures and in lake water. Carbonate mineral assemblages identified in the experiments seem to be independent of the type of microorganisms but rather controlled by the chemical composition and physical conditions of the media. The relative amounts of monohydrocalcite, hydromagnesite, and dypingite are controlled by varying sulfate concentration from 0 to 56 mM. This demonstrates a kinetic effect that could similarly affect the mineral assemblage in the lake. Also the spherical morphology of hydromagnesite points to growth of these minerals under partial inhibition in the brine under high concentrations of ions and organic polymers produced by the microbial communities. As reproduced by the culture experiments, the authigenic carbonate mineral assemblage of Lake Ac?göl most likely results from interplay of ionic composition of the brine and microbial effects.  相似文献   

18.
To better understand the formation mechanism of carbonate minerals by microbes, culture experiments with a duration of 70 days were performed under the mediation of strain GW-M isolated from soil using modified Lagoa Vermelha (LV, a hypersaline coastal Lagoon, Rio de Janeiro, Brazil) medium with 6:1 Mg/Ca molar ratio. The results demonstrated that strain GW-M can mediate the formations of both high-Mg calcite and aragonite and that dumbbell-, cauliflower-, rhombohedra-shaped, and irregular minerals coexist in the modified LV medium. The amount of rhombohedra-shaped crystals increased significantly with culture time. A proposed mechanism for these formations is the following. Heterogeneous nucleation on the surface of the extracellular polymeric substances (EPS) always occurred, and carbonates with irregular shape existed in experimental products at any stages. The morphologies evolved from rod to dumbbell and finally to cauliflower. At the initial stage (till day 20), hydrogen ions and EPS secreted by the bacteria only influenced the microenvironment around the cells, and carbonates were precipitated on the surface of bacterial cells. At the middle and late stages (on days 45 and 70), microbes and their secretions influenced the whole medium. Under these conditions, rhombohedra-shaped crystals were formed when homogeneous nucleation occurred. In addition, the results of energy-dispersive spectrometry (EDS) showed that Mg contents in the synthesized carbonate minerals with rhombohedra-shaped were significantly lower than those of carbonates with other shapes, though relationship between morphology and species of mineral cannot be obtained by this phenomenon alone. These results shed further light on the mechanism of carbonate precipitation in the presence of microbes.  相似文献   

19.
Concentrations of viruses and prokaryotes in the alkaline, moderately hypersaline, seasonally stratified Mono Lake are among the highest reported for a natural aquatic environment. We used electron microscopy to test whether viral morphological characteristics differed among the epilimnion, metalimnion, and the anoxic hypolimnion of the lake and to determine how the properties of viruses in Mono Lake compare to other aquatic environments. Viral capsid size distributions were more similar in the metalimnion and hypolimnion of Mono Lake, while viral tail lengths were more similar in the epilimnion and metalimnion. The percentage of tailed viruses decreased with depth and the relative percentages of tailed phage families changed with depth. The presence of large (>125 nm capsid), untailed viruses in the metalimnion and hypolimnion suggests that eukaryotic viruses are produced in these suboxic and anoxic, hypersaline environments. Capsid diameters of viruses were larger on average in Mono Lake compared to other aquatic environments, and no lemon-shaped or filamentous viruses were found, in contrast to other high-salinity or high-altitude lakes and seas. Our data suggest that the physically and chemically distinct layers of Mono Lake harbor different viral assemblages, and that these assemblages are distinct from other aquatic environments that have been studied. Furthermore, we found that filtration of a sample through a 0.22-μm pore-size filter significantly altered the distribution of viral capsid diameters and tail lengths, resulting in a relative depletion of viruses having larger capsids and longer tails. This observation highlights the potential for bias in molecular surveys of viral diversity, which typically rely on filtration through 0.2- or 0.22-μm pore-size membrane filters to remove bacteria during sample preparation.  相似文献   

20.
【目的】为了探讨细菌对碳酸盐矿物种类和形态的影响。【方法】本文利用丛毛单胞菌HJ-1菌株进行了持续50 d的培养实验。在实验过程中,对细菌数量、沉淀物重量、培养液中Ca2+和Mg2+浓度等进行了动态监测。利用扫描电子显微镜对矿物形态进行了观察,并利用X-射线衍射仪对矿物成分进行测定。【结果】丛毛单胞菌HJ-1菌株具有显著的诱导碳酸盐矿物沉淀的能力,碳酸盐矿物的重量随着培养时间的延长而逐渐增加。X-射线衍射结果表明,形成的碳酸盐沉淀主要由文石和高镁方解石组成,其中文石的最高含量达86%。上述矿物在形态上复杂多样,主要有杆状、柱状、哑铃形、球状和板状以及不规则状和鳞片状集合体。【结论】通常,在Mg/Ca≤2并且有微生物参与的条件下极少形成文石。本文在Mg/Ca为2,不含碳酸根离子的培养基中培养HJ-1菌株的过程中发现了文石。作者认为,低Mg/Ca条件下文石的形成主要与HJ-1菌株分泌较多的胞外多糖有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号