首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The N-terminus of regulator of G protein signaling 7 (RGS7) contains a dishevelled/egl-10/pleckstrin (DEP) domain of unknown function. To gain insight into its function, we used yeast two-hybrid analysis to screen a human whole brain cDNA library in order to identify proteins that interact specifically with the N-terminus of human RGS7 (amino acid residues 1-248). From this analysis, we identified snapin, a protein associated with the SNARE complex in neurons, as an interactor with the N-terminus of RGS7. Deletion mutation analysis in yeast demonstrated that the interaction between RGS7 and snapin is specific and is mediated primarily by amino acid residues 1-69 of RGS7 (which contains the proximal portion of the DEP domain). The interaction between RGS7 and snapin was also demonstrated in mammalian cells by coimmunoprecipitation and pull-down assays. Our results suggest that RGS7 could play a role in synaptic vesicle exocytosis through its interaction with snapin.  相似文献   

2.
Snapin, a 15-kDa protein, has been identified recently as a binding partner of SNAP-25. Moreover, snapin is regulated by phosphorylation and enhances synaptotagmin binding to SNAREs. Furthermore, snapin and C-terminal snapin fragments have been effective in changing the release properties of neurons and chromaffin cells. Here we have reinvestigated the role of snapin using both biochemical and electrophysiological approaches. Snapin is ubiquitously expressed at low levels with no detectable enrichment in the brain or in synaptic vesicles. Using non-equilibrium and equilibrium assays including pulldown experiments, co-immunoprecipitations, and CD and fluorescence anisotropy spectroscopy, we were unable to detect any specific interaction between snapin and SNAP-25. Similarly, overexpression of a C-terminal snapin fragment in hippocampal neurons failed to influence any of the analyzed parameters of neurotransmitter release. Initial biochemical characterization of recombinant snapin revealed that the protein is a stable dimer with a predominantly alpha-helical secondary structure. We conclude that the postulated role of snapin as a SNARE regulator in neurotransmitter release needs reconsideration, leaving the true function of this evolutionarily conserved protein to be discovered.  相似文献   

3.
N-Ethylmaleimide-sensitive factor (NSF) and its adaptor protein alpha-soluble NSF attachment protein (alpha-SNAP) sustain membrane trafficking by disassembling soluble NSF attachment protein receptor (SNARE) complexes that form during membrane fusion. To better understand the role of alpha-SNAP in this process, we used site-directed mutagenesis to identify residues in alpha-SNAP that interact with SNARE complexes. We find that mutations in charged residues distributed over a concave surface formed by the N-terminal nine alpha-helices of alpha-SNAP affect its ability to bind synaptic SNARE complex and promote its disassembly by NSF. Replacing basic residues on this surface with alanines reduced SNARE complex binding and disassembly, whereas replacing acidic residues with alanines enhanced alpha-SNAP efficacy in both assays. These findings show that the ability of NSF to take apart SNARE complexes depends upon electrostatic interactions between alpha-SNAP and the acidic surface of the SNARE complex and provide insight into how NSF and alpha-SNAP work together to drive disassembly.  相似文献   

4.
The loss of a glutamic acid residue in the AAA-ATPase (ATPases associated with diverse cellular activities) torsinA is responsible for most cases of early onset autosomal dominant primary dystonia. In this study, we found that snapin, which binds SNAP-25 (synaptosome-associated protein of 25,000 Da) and enhances the association of the SNARE complex with synaptotagmin, is an interacting partner for both wild type and mutant torsinA. Snapin co-localized with endogenous torsinA on dense core granules in PC12 cells and was recruited to perinuclear inclusions containing mutant DeltaE-torsinA in neuroblastoma SH-SY5Y cells. In view of these observations, synaptic vesicle recycling was analyzed using the lipophilic dye FM1-43 and an antibody directed against an intravesicular epitope of synaptotagmin I. We found that overexpression of wild type torsinA negatively affects synaptic vesicle endocytosis. Conversely, overexpression of DeltaE-torsinA in neuroblastoma cells increases FM1-43 uptake. Knockdown of snapin and/or torsinA using small interfering RNAs had a similar inhibitory effect on the exo-endocytic process. In addition, down-regulation of torsinA causes the persistence of synaptotagmin I on the plasma membrane, which closely resembles the effect observed by the overexpression of the DeltaE-torsinA mutant. Altogether, these findings suggest that torsinA plays a role together with snapin in regulated exocytosis and that DeltaE-torsinA exerts its pathological effects through a loss of function mechanism. This may affect neuronal uptake of neurotransmitters, such as dopamine, playing a role in the development of dystonic movements.  相似文献   

5.
Temporal and spatial assembly of signal transduction machinery determines dendrite branch patterning, a process crucial for proper synaptic transmission. Our laboratory previously cloned and characterized cypin, a protein that decreases PSD-95 family member localization and regulates dendrite number. Cypin contains zinc binding, collapsin response mediator protein (CRMP) homology, and PSD-95, Discs large, zona occludens-1 binding domains. Both the zinc binding and CRMP homology domains are needed for dendrite patterning. In addition, cypin binds tubulin via its CRMP homology domain to promote microtubule assembly. Using a yeast two-hybrid screen of a rat brain cDNA library with cypin lacking the carboxyl terminal eight amino acids as bait, we identified snapin as a cypin binding partner. Here, we show by affinity chromatography and coimmunoprecipitation that the carboxyl-terminal coiled-coil domain (H2) of snapin is required for cypin binding. In addition, snapin binds to cypin's CRMP homology domain, which is where tubulin binds. We also show that snapin competes with tubulin for binding to cypin, resulting in decreased microtubule assembly. Subsequently, overexpression of snapin in primary cultures of hippocampal neurons results in decreased primary dendrites present on these neurons and increased probability of branching. Together, our data suggest that snapin regulates dendrite number in developing neurons by modulating cypin-promoted microtubule assembly.  相似文献   

6.
Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4–6 SNAREs actually increases the equilibrium distance.  相似文献   

7.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly.  相似文献   

8.
Communication between nerve cells in the brain occurs primarily through specialized junctions called synapses. Recently, many details of synaptic transmission have emerged. The identities of specific proteins important for synaptic vesicle release have now been established. We have investigated three synaptic proteins, VAMP (vesicle associated membrane protein; also called synaptobrevin), syntaxin, and SNAP25 (synaptosomal associated protein of 25kDa) as possible targets in the dopamine-mediated modulation of synaptic function in rat striatal slices. These three proteins form a SNARE (soluble N-ethylmalemide-sensitive factor attachment protein receptors) core complex that is known to be essential for synaptic transmission. Although it is envisioned that the SNAREs undergo dynamic and cyclic interactions to elicit synaptic vesicle release, their precise functions in neurotransmission remains unknown. We have examined SNARE complexes in intact rat striatal slices. Cellular proteins were solubilized, separated electrophoretically by SDS-PAGE, and then identified immunologically. Application of dopamine to striatal slices results in SNAREs favoring the SNARE core complex, a complex which forms spontaneously in the absence of crosslinking agents, rather than the monomer form. In addition, rapid crosslinking of dopamine-treated striatal slices demonstrates that the SNARE complex is increased 4 fold in dopamine treated striatal slices compared with control slices. Haloperidol blocked the dopamine-induced change in the core complex. These results suggest that changes in the activities of SNAREs may be involved in the underlying cellular mechanisms(s) of dopamine-regulated synaptic plasticity of the striatum.  相似文献   

9.
Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly   总被引:7,自引:0,他引:7  
Lao G  Scheuss V  Gerwin CM  Su Q  Mochida S  Rettig J  Sheng ZH 《Neuron》2000,25(1):191-201
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that forms the SNARE complex with VAMP/synaptobrevin and SNAP-25. Identifying proteins that modulate SNARE complex formation is critical for understanding the molecular mechanisms underlying neurotransmitter release and its modulation. We have cloned and characterized a protein called syntaphilin that is selectively expressed in brain. Syntaphilin competes with SNAP-25 for binding to syntaxin-1 and inhibits SNARE complex formation by absorbing free syntaxin-1. Transient overexpression of syntaphilin in cultured hippocampal neurons significantly reduces neurotransmitter release. Furthermore, introduction of syntaphilin into presynaptic superior cervical ganglion neurons in culture inhibits synaptic transmission. These findings suggest that syntaphilin may function as a molecular clamp that controls free syntaxin-1 availability for the assembly of the SNARE complex, and thereby regulates synaptic vesicle exocytosis.  相似文献   

10.
Complexins constitute a family of four synaptic high-affinity SNARE complex-binding proteins. They positively regulate a late, post-priming step in Ca2+-triggered synchronous neurotransmitter release, but the underlying molecular mechanisms are unclear. We show here that SNARE complex binding of complexin I (CplxI) via its central alpha-helix is necessary but, unexpectedly, not sufficient for its key function in promoting neurotransmitter release. An accessory alpha-helix on the N-terminal side of the SNARE complex-binding region has an inhibitory effect on fast synaptic exocytosis, whereas sequences N-terminally adjacent to this helix facilitate Ca2+-triggered release even in the absence of the Ca2+ sensor synaptotagmin-1. Our results indicate that distinct functional domains of CplxI differentially regulate synaptic exocytosis and that, through the interplay between these domains, CplxI carries out a crucial role in fine-tuning Ca2+-triggered fast neurotransmitter release.  相似文献   

11.
The endoplasmic reticulum/Golgi SNARE rbet1 cycles between the endoplasmic reticulum and Golgi and is essential for cargo transport in the secretory pathway. Although the quaternary SNARE complex containing rbet1 is known to function in membrane fusion, the structural role of rbet1 is unclear. Furthermore, the structural determinants for rbet1 targeting and its cyclical itinerary have not been investigated. We utilized protein interaction assays to demonstrate that the rbet1 SNARE motif plays a structural role similar to the carboxyl-terminal helix of SNAP-25 in the synaptic SNARE complex and demonstrated the importance to SNARE complex assembly of a conserved salt bridge between rbet1 and sec22b. We also examined the potential role of the rbet1 SNARE motif and SNARE interactions in rbet1 localization and dynamics. We found that, in contrast to what has been observed for syntaxin 5, the rbet1 SNARE motif was essential for proper targeting. To test whether SNARE interactions were important for the targeting function of the SNARE motif, we used charge repulsion mutations at the conserved salt bridge position that rendered rbet1 defective for binary, ternary, and quaternary SNARE interactions. We found that heteromeric SNARE interactions are not required at any step in rbet1 targeting or dynamics. Furthermore, the heteromeric state of the SNARE motif does not influence its interaction with the COPI coat or efficient recruitment onto transport vesicles. We conclude that protein targeting is a completely independent function of the rbet1 SNARE motif, which is capable of distinct classes of protein interactions.  相似文献   

12.
Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.  相似文献   

13.
Much of the focus of neurobiological research into schizophrenia is based on the concept that disrupted synaptic connectivity underlies the pathology of the disorder. Disruption of synaptic connectivity is proposed to be a consequence of both disrupted synaptic transmission in adulthood and abnormalities in the processes controlling synaptic connectivity during development of the central nervous system. This synaptic hypothesis fits with neurodevelopmental models of schizophrenia and our understanding of the mechanisms of antipsychotic medication. This conceptual model has fostered efforts to define the exact synaptic pathology further. Synaptic proteins are obvious candidates for such studies, and the integral role of the SNARE complex, and SNARE-associated proteins, in synaptic transmission will ensure that it is the focus of much of this research. Significant new insights into the role of this complex are arising from new mouse models of human disease. Here the evidence from both animal and human clinical studies showing that the SNARE complex has a key role to play in the aetiology and pathogenesis of schizophrenia is discussed.  相似文献   

14.
Biological membrane fusion is a basic cellular process catalyzed by SNARE proteins and additional auxiliary factors. Yet, the critical mechanistic details of SNARE-catalyzed membrane fusion are poorly understood, especially during rapid synaptic transmission. Here, we systematically assessed the electrostatic forces between SNARE complex, auxiliary proteins and fusing membranes by the nonlinear Poisson-Boltzmann equation using explicit models of membranes and proteins. We found that a previously unrecognized, structurally preferred and energetically highly favorable lateral orientation exists for the SNARE complex between fusing membranes. This preferred orientation immediately suggests a novel and simple synaptotagmin-dependent mechanistic trigger of membrane fusion. Moreover, electrostatic interactions between membranes, SNARE complex, and auxiliary proteins appear to orchestrate a series of membrane curvature events that set the stage for rapid synaptic vesicle fusion. Together, our electrostatic analyses of SNAREs and their regulatory factors suggest unexpected and potentially novel mechanisms for eukaryotic membrane fusion proteins.  相似文献   

15.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

16.
Fusion of lipid membranes to form a single bilayer is an essential process for life and provides important biological functions including neurotransmitter release. Membrane fusion proteins facilitate approximation of interacting membranes to overcome the energy barrier. In case of synaptic transmission, proteins involved are known as soluble N‐ethylmaleimide‐sensitive‐factor attachment receptor (SNARE) proteins. The SNAREs from synaptic vesicles interact with the SNAREs from the target membrane to form a coiled‐coil bundle of four helices, thus pulling the membranes tightly together and initiating fusion. However, it remains unclear how these proteins function at molecular level. Natural systems are often too complex to obtain unambiguous results. Simple model systems mimicking natural proteins in synthetic lipid bilayers are powerful tools for obtaining insights into this essential biological process. An important advantage of such systems is their well‐defined composition, which can be systematically varied in order to fully understand events at molecular level. In this review, selected model systems are presented based upon specific interactions between recognition units embedded in separate lipid bilayers mimicking native SNARE protein‐mediated membrane fusion. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

18.
Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.  相似文献   

19.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

20.
Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号