首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salinity is one of the major abiotic stressors affecting cotton production. The AtNHX1 gene from Arabidopsis thaliana and the TsVP gene from Thellungiella halophila?were co-expressed in cotton (cv. GK35) to improve its salt tolerance. Cotton with overexpressed AtNHX1-TsVP genes had higher emergence rates and higher dry matter accumulation under salt stress in the greenhouse and better emergence rates and survival rates in a saline field compared to the WT. More importantly, the cotton with overexpressed AtNHX1-TsVP genes had higher seed cotton yield in the saline field. The growth of transgenic cotton with overexpression of the AtNHX1-TsVP genes may be related to the accumulation of Na+, K+ and Ca2+ in leaves under salt stress. The accumulation of these cations could improve the ability to maintain ion homeostasis and osmotic potential in plant cells under salt stress, thereby conferring cells with higher relative water content and maintaining higher carbon assimilation capacity. These results reveal that overexpression of AtNHX1-TsVP significantly enhances the tolerance of transgenic cotton to high salinity compared to WT. This study aids efforts of breeding salt-tolerant cotton to achieve the strategy of “westward, eastward, northward” in Chinese cotton production.  相似文献   

3.
4.
Zhao  Zhongjuan  Wei  Yanli  Li  Ling  Liu  Baojun  Yang  Kai  Yang  Hetong  Li  Jishun 《Journal of plant research》2022,135(1):93-104

Peppermint (Mentha piperita L.) is an important medicinal aromatic plant. In this study, the morphology, physiology, biochemistry and gene expression of chromosomes doubling peppermint (D1 lines) were analyzed. The analysis showed that D1 lines had larger, thicker and darker leaves, and stronger roots when planted in the pots, but delayed growth in the field condition. Under NaCl stress, the D1 lines increased cell oxidative defense through more active antioxidant enzymes and decreased the oxidative damages of cell membrane, leading to a significantly greater survival rate and photosynthesis intensity than WT lines. The size and density of glandular trichomes of D1 lines was larger, which contributed to its higher essential oil yield. In addition, chromosome doubling reduced the inhibition of NaCl stress on essential oil yield and quality, through changing the expression of genes in the oil biosynthesis pathway. The traits of chromosome doubling peppermint provide new technical and theoretical evidence for peppermint germplasm improvement.

  相似文献   

5.
The present inquest was undertaken in view of the alarming increase in the concentration of cadmium, nickel etc., in the arable soils of Uttar Pradesh, India and the little attention paid to the effect of these heavy metals on the performance of pharmaceutically imperative essential oil (EO) producing crops like peppermint (Mentha piperita L.). We devised a pot experiment to study the influence of exogenously sourced salicylic acid (SA) (10?4 M) in the amelioration of growth, protection of photosynthesis and essential oil production against 30, 60 and 120 mg kg?1 soil of cadmium (Cd)-accrued stress in peppermint. Plants grown with Cd showed remarkably deleterious effects on growth, photosynthesis, carbon and nitrate assimilating enzymes and yield and active constituents of EO in addition to the marked elevation in the oxidative stress. SA successfully alleviated the Cd induced toxicity in peppermint, improved photosynthesis by enhancing activity of RuBisCo and carbonic anhydrase and minimized the oxidative stress by mitigating the production of free radicals by the maintenance of free radical scavenging enzymes and reduced glutathione (GSH) pool. Furthermore, the decrease in the concentration of EO and menthol due to Cd stress was successfully alleviated by SA application which was evident from the gas chromatograms of EO of Cd stressed SA treated plants.  相似文献   

6.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

7.
The roles of plant growth regulators (PGRs) in plants are well documented. However, there is a little information regarding their roles in alleviating salt stress in plants, particularly peppermint. This necessitated the evaluation of the efficiency of three selected PGRs in counteracting the ill effect of salt stress by conducting a pot experiment on peppermint (Lamiaceae). Three uniform size suckers were transplanted in each pot containing proper nutrients. Thirty day old plants were subjected to 4 levels of salinity, viz. 0, 50, 100 or 150 mM NaCl. Salt stress was given at 30 days after their transplantation (DAT). Plants were sprayed twice, i.e., at 60 and 75 DAT with 10?6 M each of gibberellic acid (GA3), salicylic acid (SA) or triacontanol (Tria). The sampling was made at 100 DAT and harvesting at 120 DAT. The graded levels of salinity decreased growth, photosynthesis, carbonic anhydrase (CA) activity, NPK content, peltate glandular trichome (PGT) density, essential oil (EO) and menthol content and herb, EO and menthol yield, but increased catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) activities and proline content linearly. Spray of PGRs particularly SA improved all parameters under both salt and salt free conditions. The maximum values for yields of herb, EO and menthol were noted with 0 mM NaCl?×?SA. However, antioxidants, proline content, PGT density and EO content were found to be maximum with 150 mM NaCl?×?SA.  相似文献   

8.
9.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

10.
Exogenous salicylic acid (SA) can be used for chemical hardening to alleviate oxidative stress in plants exposed to salinity. The treatment of 5-week-old Arabidopsis thaliana plants with increasing doses of SA alters the ascorbate (ASC) and glutathione (GSH) pools, and modulates their redox status and the activity of several antioxidant enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR). To investigate the role of GR in the maintenance of cytoplasmic redox homeostasis after hardening by SA, wild type (WT) and gr1 mutant plants, expressing the cytoplasmic redox-sensitive green fluorescent protein (c-roGFP1), were pre-treated with 10?7 and 10?5 M SA for 2 weeks and subsequently exposed to 100 mM NaCl. The redox status of the salt-stressed WT plants became more oxidized, which was prevented by pretreatment with 10?5 M SA. The gr1 mutants showed more positive redox potential than WT plants, which could be reversed by treatment with 10?5 M SA. In mutants, the increased GSH levels may have compensated for the deleterious effect of GR deficiency and stabilized the redox potential in plants exposed to salinity. The ASC regeneration in WT plants shifted from the GSH-dependent dehydroascorbate reductase (DHAR) reaction to the NAD(P)H-dependent monodehydroascorbate reductase (MDHAR) activity during chemical hardening, which contributed to the preservation of the GSH pool in plants under salt stress. Our results suggest that the maintenance of GSH levels and redox homeostasis by SA-mediated hardening play a major role in priming and defending against salt stress.  相似文献   

11.
Thymus daenensis Celak. is an aromatic herb used as a popular medicine and its natural products in the form of extracts and essential oil have significant economic values in Iran. We hypothesized that spraying plants grown under deficit irrigation system with chitosan can be considered as an applicable method to enhance essential oil and antioxidant activity in thyme. Response of thyme to three irrigation regimes including well-watered, moderate stress, and severe stress along with three levels of chitosan application rates 0, 200, and 400 μL L?1 was evaluated in a 2-year study in 2014 and 2015. Drought stress condition significantly shortened phenologic stages, more specifically in the first (establishment) year. All growth parameters were reduced dramatically as drought stress intensified. Imposing even moderate stress reduced leaf area as much as 59 and 44% in the first year and the second year, respectively. Biomass yield of plants grown under severe drought stress decreased substantially, whereas essential oil content and the share of thymol in thyme oil which possesses the greatest degree of biological activity improved. Maximum oil yield (1.50 g plant?1) was obtained from plants under mild drought stress when sprayed with 400 μL L?1 chitosan in the second year when plants were well-established. Foliar applications of chitosan reduced the adverse effect of water deficit on oil yield and improved thymol content of the essential oil. Chitosan also increased secondary metabolites including α-terpinene, p-cymene, γ-terpinene, thymol, carvacrol and β-caryophyllene. Leaf flavonoid reduced under deficit irrigation while more phenol was found in plants grown under deficit irrigation. The essential oil of thyme exhibited antioxidant property when the plants were sprayed with 400 μL L?1 chitosan. The results of this study indicated that thyme can be grown successfully under moderate stress and that application of chitosan elicitor can to some degree compensate the negative impact of deficit irrigation on its biomass and essential oil yield.  相似文献   

12.
Salt stress imposes a major environmental threat to agriculture, therefore, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any breeding strategy. In the present study, the expression profile of genes involved in ion homeostasis including salt overly sensitive (HvSOS1, HvSOS2, HvSOS3), vacuolar Na+/H+ antiporter (HvNHX1), and H+-ATPase (HVA) along with ion content measurement were investigated in two genotypes of Hordeum vulgare under 300 mM NaCl. The gene expressions were measured in the roots and shoots of a salt-tolerant mutant genotype M4-73-30 and in its wild-type cv. Zarjou by real-time qPCR technique. The critical differences between the salt-tolerant mutant and its wild-type were observed in the expressions of HvSOS1 (105-fold), HvSOS2 (24-fold), HvSOS3 (31-fold), and HVA (202-fold) genes in roots after 6-h exposure to NaCl. The parallel early up-regulation of these genes in root samples of the salt-tolerant mutant genotype indicated induction of Na+/H+ antiporters activity and Na+ exclusion into apoplast and vacuole. The earlier up-regulation of HvSOS1, HVA, and HvNHX1 genes in shoot of the wild-type genotype corresponded to the relative accumulation of Na+ which was not observed in salt-tolerant mutant genotype because of efficient inhibitory role of the root in Na+ transport to the shoot. In conclusion, the lack of similarity in gene expression patterns between the two genotypes with similar genetic background may confirm the hypothesis that mutation breeding could change the ability of salt-tolerant mutant genotype for efficient ion homeostasis via salinity oversensitivity response.  相似文献   

13.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

14.
Peppermint (Mentha piperita) is known as an important medicinal plant throughout the world. In the present study, after exposing peppermint plants under drought stress, the qRT-PCR was use to analyze the expression of genes involved in menthol biosynthesis pathway and encoding: limonene synthase (lS), limon-3-hydroxylase (l3oh), trans-isopiperitenol dehydrogenase (ipd), isopiperitenone reductase (ipr), pulegone reductase (pr), menthol dehydrogenase (mdeh), and menthofuran synthase (mfs), which also evaluated the morphological and physiological traits. The results revealed that due to water stress, the gene expression levels of ipd, ipr, and mfs were increased, whereas the gene expression level of pr and mdeh was decreased under water stress conditions. The most of essential oil components (menthol, menthofuran, and plugene), which were analyzed by gas chromatography–mass spectrometry (GC–MS), was positively correlated with genes expression. Drought stress decreased morphological and induces increasing contents of pulegone and menthofuran and reduction in menthol percentages. Results from this study suggest that up-regulation of mfs might contribute to the altered of menthofuran as well as down-regulation of mdeh might cause the reduction of menthol. Furthermore, increasing ls gene expression levels might induce more essential oil yield, while reduction of mfs gene expression levels causes an improvement of essential oil quality.  相似文献   

15.
The plant stress hypothesis posits that a herbivore’s reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO43?, K+, and Na+ in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L?1) resulted in increased Na+ and protein content relative to control plants, as well as reduced PO43?, K+, and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day?1 in control specimens, 0.125 day?1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L?1), and was highest (0.241 day?1) on plants grown under moderate salinity conditions (1920 mg L?1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.  相似文献   

16.
17.
Stress-induced methylglyoxal (MG) functions as a toxic molecule, inhibiting plant physiological processes such as photosynthesis and antioxidant defense systems. In the present study, an attempt was made to investigate the MG detoxification through glutathione metabolism in indica rice [Oryza sativa L. ssp. indica cv. Pathumthani 1] under salt stress by exogenous foliar application of paclobutrazol (PBZ). Fourteen-day-old rice seedlings were pretreated with 15 mg L?1 PBZ foliar spray. After 7 days, rice seedlings were subsequently exposed to 0 (control) or 150 mM NaCl (salt stress) for 12 days. Prolonged salt stress enhanced the production of MG molecules and the oxidation of proteins, leading to decreased activity of glyoxalase enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II). Consequently, the decreased glyoxalase activities were also associated with a decline in reduced glutathione (GSH) content and glutathione reductase (GR) activity. PBZ pretreatment of rice seedlings under salt stress significantly lowered MG production and protein oxidation, and increased the activities of both Gly I and Gly II. PBZ also increased GSH content and GR activity along with the up-regulation of glyoxalase enzymes, under salt stress. In summary, salinity induced a high level of MG and the associated oxidative damage, while PBZ application reduced the MG toxicity by up-regulating glyoxalase and glutathione defense system in rice seedlings.  相似文献   

18.
In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.  相似文献   

19.
The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号