首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Obesity is characterized by increases in the number of mature adipocytes. Nascent adipocytes arise from mesenchymal stem cells (MSCs) by a multi-step process — MSCs are recruited to the adipocyte lineage forming determined preadipocytes, these committed progenitors proliferate, undergo growth arrest, and finally differentiate into mature adipocytes. Although the genetic mechanisms that control the differentiation of preadipocytes into mature adipocytes are understood to a large extent, the earliest events in adipogenesis — especially the commitment of MSCs into preadipocytes — are largely unknown. Recently, bone morphogenetic protein-4 (BMP-4) has been implicated in the commitment of pluripotent MSCs to the adipocyte lineage by two independent lines of investigation. First, growth-arrested 10T1/2 cells do not normally respond to a hormonal cocktail that causes various growth-arrested preadipocyte cell lines to differentiate into adipocytes, but if 10T1/2 cells are first treated with BMP-4 they will respond to these hormonal inducers by undergoing terminal adipocyte differentiation. Second, a preadipocyte cell line, A33 cells, derived from 10T1/2 cells after exposing the cells to the DNA methyltransferase inhibitor 5-azacytidine was shown to express BMP-4, and this endogenous BMP-4 expression is required for acquisition of the preadipocyte phenotype of these cells. A role for the BMP-4 signaling pathway in adipogenesis is discussed.  相似文献   

2.
目的:探讨肾透明细胞癌的分泌蛋白IGFBP3对癌旁脂肪细胞分化的作用及通过脂肪细胞促进肾透明癌细胞生长与转移的作用。方法:通过肾细胞癌的基因数据库发现过表达的基因IGFBP3,免疫组化和RT-PCR确认IGFBP3在标本中的表达。RT-PCR和Western Blot检测IGFBP3对脂肪细胞分化成熟特征标志物表达的影响。以过表达IGFBP3的786-O细胞为模型,Western Blot检测IGFBP3的促脂肪细胞分化作用与TGFβ-smad1/5/8及TGFβ-p38MAPK信号通路的关系。将过表达IGFBP3的786-O细胞与脂肪细胞共培养得到条件培养基,通过油红染色检测条件培养的肾癌细胞中脂滴含量,迁移实验和CCK8实验分别检测脂肪细胞对肾癌细胞侵袭性及增殖的影响。结果:相较于正常组,肾癌标本中IGFBP3的表达增加(P=0.017)。IGFBP3使脂肪细胞分化成熟相关标志物PPARγ、PGC1α、c/EBPα、Prdm16、UCP1表达增加。以IGFBP3处理脂肪细胞时,可以增加TGFβ下游蛋白表达水平,30 min后p-smad1/5/8表达增加(P=0.024),60 min后p-p38MAPK表达明显增加(P=0.013)。条件培养后的786-O细胞内的脂滴形成增加(P=0.028),脂肪细胞促进786-O细胞的增殖和迁移能力。结论:IGFBP3是肾透明细胞癌中过度表达的蛋白,能够促进前脂肪细胞分化,其机制主要通过激活TGFβ通路中的smad1/5/8、p38MAPK。成熟的脂肪细胞能够促进肾癌细胞质脂滴形成,并且促进肿瘤的增殖、提高肿瘤的侵袭性。  相似文献   

3.
We hypothesized that preadipocyte differentiation would be depressed by differentiating myoblasts, whereas preadipocytes would promote adipogenic gene expression in myoblasts in a co-culture system. We also determined the effects of arginine, a biological precursor of nitric oxide, and/or trans-10, cis-12 conjugated linoleic acid (CLA) on adipogenic gene expression during differentiation of bovine preadipocytes and myoblasts. Bovine semimembranosus satellite cells (BSC) and subcutaneous preadipocytes were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's modified Eagle medium (DMEM) and 1% antibiotics during the 3-day proliferation period. After proliferation, BSC and preadipocytes were treated for 3 days with 3% horse serum/DMEM and 5% FBS/DMEM with antibiotics, respectively. Media also contained 100 μM oleic acid, 10 μg/ml insulin, 1 μg/ml pioglitazone and 1 μg/ml dexamethasone. Subsequently, the differentiating myoblasts and adipocytes were cultured in their respective media with 5 mM arginine and/or 40 μM trans-10, cis-12 CLA for 4 days. Finally, myoblasts and adipocytes were single- or co-cultured for 2 h singly or in combination. Arginine stimulated SCD gene expression, whereas CLA depressed SCD gene expression in adipocytes and myoblasts (P=.002). Co-culture of adipocytes and myoblasts elicited an increase in C/EBPβ and PPARγ gene expression in differentiated myoblasts (P≤.01) and an increase in GPR43 gene expression in adipocytes (P=.01). Expression of AMPKα and CPT1ß was unaffected by co-culture, although SCD gene expression tended (P=.12) to be depressed by co-culture. These experiments demonstrated that co-culture of adipocytes with myoblasts increased adipogenic gene expression in the myoblastic cells.  相似文献   

4.
Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.  相似文献   

5.

Introduction

Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes.

Research Design and Methods

Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs.

Results

Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes.

Conclusions

Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes.  相似文献   

6.
KRAS, KRYSTYNA M., DOROTHY B. HAUSMAN, GARY J. HAUSMAN, AND ROY J. MARTIN. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res. Objectives: The ability to acquire fat cells persists over the life spans of animals. It is unknown whether adipocyte acquisition is the result of preadipocyte proliferation or stem cell recruitment to become adipocytes. The purposes of these studies were 1) to characterize early differentiation of stromal vascular (S-V) cells to preadipocytes as it is influenced by insulin, dexamethasone (DEX), and insulin-like growth factor-I (IGF-I); and 2) to determine whether new fat cells arise from stem cell recruitment or preadipocyte proliferation. Research Methods and Procedures: Freshly isolated S-V cells from rat inguinal adipose tissues were plated for 24 hours then exposed to serum-free medium. Results: Approximately 15% of freshly plated S-V cells were preadipocytes as determined by a preadipocyte specific marker, AD3. Total cell number and proportion of preadipocytes were significantly greater with 100 nM insulin treatment than with 0, 0. 1, or 1. 0 nM, but IGF-I treatment at 10 nM resulted in preadipocyte development similar to that with 100 nM insulin treatment. The addition of 5 nM DEX to the 100 nM insulin treatment resulted in a 20% increase in preadipocyte number by day 2 when compared to either treatment alone. 5-Bromo-2′-deoxyuridine treatment suppressed the increased proportion of preadipocytes from days 0–2 in non-insulin treated cells and prevented the increase typically observed with insulin. A mitosis inhibitor also significantly reduced the proportion of preadipocytes. Discussion: These results show for the first time that S-V cells are recruited as preadipocytes and that proliferation of these preadipocytes and early differentiation occur simultaneously.  相似文献   

7.
8.
用成熟脂肪建立一种新的猪前体脂肪细胞培养模型   总被引:1,自引:0,他引:1  
用去分化的成熟脂肪细胞建立一种新的具有再增殖和再分化能力的猪前体脂肪细胞模型. 用“天花板” 培养法分离、培养1~3日龄仔猪皮下成熟脂肪细胞, 显微镜下观察细胞形态变化并计数, 流式细胞术检测细胞周期;油红O染色法检测脂肪细胞分化率, RT-PCR分析前体脂肪细胞标志基因Pref-1及成熟脂肪细胞关键转录因子PPARγ和C/EBPα等mRNA表达情况. 发现刚贴壁的细胞为单室脂滴成熟脂肪细胞, 油红O染色完全阳性; 14d后这种成熟脂肪细胞完全去分化为无脂滴的纤维状细胞, 并表达前体脂肪细胞标志基因Pref-1, 油红O染色阴性. 这种去分化的前体脂肪细胞在成脂诱导剂作用下,可重新分化为成熟的脂肪细胞. 结果证实,成熟脂肪细胞去分化后的前体脂肪细胞可重新增殖、分化为成熟脂肪细胞, 是一种新的有效的前体脂肪细胞模型.  相似文献   

9.
We showed previously in cultures of primary human adipocytes and preadipocytes that lipopolysaccharide and trans-10,cis-12-conjugated linoleic acid (10,12-CLA) activate the inflammatory signaling that promotes insulin resistance. Because our published data demonstrated that preadipocytes are the primary instigators of inflammatory signaling in lipopolysaccharide-treated cultures, we hypothesized that they played the same role in 10,12-CLA-mediated inflammation. To test this hypothesis, we employed four distinct models. In model 1, a differentiation model, CLA activation of MAPK and induction of interleukin-8 (IL-8), IL-6, IL-1β, and cyclo-oxygenase-2 (COX-2) were greatest in differentiated compared with undifferentiated cultures. In model 2, a cell separation model, the mRNA levels of these inflammatory proteins were increased by 10,12-CLA compared with bovine serum albumin vehicle in the adipocyte fraction and the preadipocyte fraction. In model 3, a co-culture insert model, inserts containing ∼50% adipocytes (AD50) or ∼100% preadipocytes (AD0) were suspended over wells containing AD50 or AD0 cultures. 10,12-CLA-induced IL-8, IL-6, IL-1β, and COX-2 mRNA levels were highest in AD50 cultures when co-cultured with AD0 inserts. In model 4, a conditioned medium (CM) model, CM collected from CLA-treated AD50 but not AD0 cultures induced IL-8 and IL-6 mRNA levels and activated phosphorylation of MAPK in naive AD0 and AD50 cultures. Consistent with these data, 10,12-CLA-mediated secretions of IL-8 and IL-6 from AD50 cultures were higher than from AD0 cultures. Notably, blocking adipocytokine secretion prevented the inflammatory capacity of CM from 10,12-CLA-treated cultures. These data suggest that CLA instigates the release of inflammatory signals from adipocytes that subsequently activate adjacent preadipocytes.  相似文献   

10.
White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the molecular mechanisms that regulate preadipocyte proliferation during adipose tissue development. Necdin, which is expressed predominantly in postmitotic neurons, is a pleiotropic protein that possesses anti-mitotic and pro-survival activities. Here we show that necdin functions as an intrinsic regulator of white preadipocyte proliferation in developing adipose tissues. Necdin is expressed in early preadipocytes or mesenchymal stem cells residing in the stromal compartment of white adipose tissues in juvenile mice. Lentivirus-mediated knockdown of endogenous necdin expression in vivo in adipose tissues markedly increases fat mass in juvenile mice fed a high-fat diet until adulthood. Furthermore, necdin-null mutant mice exhibit a greater expansion of adipose tissues due to adipocyte hyperplasia than wild-type mice when fed the high-fat diet during the juvenile and adult periods. Adipose stromal-vascular cells prepared from necdin-null mice differentiate in vitro into a significantly larger number of adipocytes in response to adipogenic inducers than those from wild-type mice. These results suggest that necdin prevents excessive preadipocyte proliferation induced by adipogenic stimulation to control white adipocyte number during adipose tissue development.  相似文献   

11.
BackgroundObesity and type 2 diabetes mellitus, which are widespread throughout the world, require therapeutic interventions targeted to solve clinical problems (insulin resistance, hyperglycaemia, dyslipidaemia and steatosis). Several natural compounds are now part of the therapeutic repertoire developed to better manage these pathological conditions. Cladosporols, secondary metabolites from the fungus Cladosporium tenuissimum, have been characterised for their ability to control cell proliferation in human colon cancer cell lines through peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Here, we report data concerning the ability of cladosporols to regulate the differentiation of murine 3T3-L1 preadipocytes.MethodsCell counting and MTT assay were used for analysing cell proliferation. RT-PCR and Western blotting assays were performed to evaluate differentiation marker expression. Cell migration was analysed by wound-healing assay.ResultsWe showed that cladosporol A and B inhibited the storage of lipids in 3T3-L1 mature adipocytes, while their administration did not affect the proliferative ability of preadipocytes. Moreover, both cladosporols downregulated mRNA and protein levels of early (C/EBPα and PPARγ) and late (aP2, LPL, FASN, GLUT-4, adiponectin and leptin) differentiation markers of adipogenesis. Finally, we found that proliferation and migration of HT-29 colorectal cancer cells were inhibited by conditioned medium from cladosporol-treated 3T3-L1 cells compared with the preadipocyte conditioned medium.ConclusionsTo our knowledge, this is the first report describing that cladosporols inhibit in vitro adipogenesis and through this inhibition may interfere with HT-29 cancer cell growth and migration.General significanceCladosporols are promising tools to inhibit concomitantly adipogenesis and control colon cancer initiation and progression.  相似文献   

12.
Our group has recently demonstrated (Gesta, S., Simon, M., Rey, A., Sibrac, D., Girard, A., Lafontan, M., Valet, P., and Saulnier-Blache, J. S. (2002) J. Lipid Res. 43, 904-910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase d-activity (LPLDact) involved in synthesis of the bioactive phospholipid lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A adipocyte-conditioned medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase, autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in a primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX-expressing COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue and was substantially increased in genetically obese-diabetic db/db mice when compared with their lean siblings. In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.  相似文献   

13.
Wang YH  Zheng HY  Qin NL  Yu SB  Liu SY 《生理学报》2007,59(1):8-12
为了探讨ATP敏感钾通道在前脂肪细胞增殖分化中作用,本实验用逆转录实时定量PCR方法检测大鼠前脂肪细胞和诱导5d获得的脂肪细胞中该通道磺脲类受体2(sulphonylurea receptor2,SUR2)mRNA表达,探讨该通道阻滞剂格列本脲和激动剂二氮嗪对前脂肪细胞中SUR2mRNA表达的影响;MTT检测前脂肪细胞增殖;流式细胞仪检测细胞周期;油红O染色法检测细胞内脂质含量;Image-Pro Plus5.0软件测量细胞直径;逆转录PCR检测过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activatedreceptor-γ PPAR-γ)mRNA表达。结果显示:前脂肪细胞及诱导5d获得的脂肪细胞均有SUR2mRNA表达,且后者明显高于前者;格列本脲抑制前脂肪细胞SUR2mRNA表达,剂量依赖性地促进前脂肪细胞增殖,增加G2/M+S期细胞百分比,增加细胞脂质含量,使脂肪细胞直径增大,增加PPAR-γ mRNA的表达;二氮嗪在这些方面的作用与格列本脲相反。以上结果提示,ATP敏感钾通道在前脂肪细胞增殖和分化中可能起调节作用,PPAR-γ可能参与这些作用。  相似文献   

14.
We previously demonstrated that maternal protein restriction (MPR) during pregnancy and lactation led to fetal growth restriction and development of increased visceral adiposity in adult male rat offspring. Here we studied the rate of proliferation and differentiation of adipocyte precursors (preadipocytes) in vitro to investigate whether MPR may permanently program adipocyte growth and development in adult male offspring. Preadipocytes were isolated from visceral adipose tissue of control and MPR offspring at 130 days of age, and cultured under standard conditions. The rate of proliferation was studied by [(3)H]-thymidine incorporation, and the rate of differentiation assessed with the use of biochemical and morphological markers. Although it did not affect the rate of differentiation, MPR increased the rate of preadipocyte proliferation by almost twofold. To ascertain if the increased proliferation was due to persisting in vivo influences or aberrations inherent in the precursor cells, we studied the rate of preadipocyte proliferation in subcultures. We found that the increased rate of proliferation of MPR preadipocytes persisted throughout the first two subcultures, indicative of an inherent abnormality. In addition, we examined the rate of preadipocyte proliferation under reduced serum conditions. We showed that MPR reduced the rate of preadipocyte proliferation to 56 and 35% of the control in the presence of 5 and 2.5% serum, respectively. Taken together, these results demonstrate that MPR permanently programs adipocyte growth and development such that adipocyte precursors derived from MPR offspring replicate excessively under standard culture conditions but exhibit markedly attenuated growth rate under reduced serum conditions.  相似文献   

15.
Preadipocyte conversion to macrophage. Evidence of plasticity   总被引:11,自引:0,他引:11  
Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. An increasing number of reports demonstrate that cells from adipose lineages (preadipocytes and adipocytes) and macrophages share numerous functional or antigenic properties. No large scale comparison reflecting the phenotype complexity has been performed between these different cell types until now. We used profiling analysis to define the common features shared by preadipocyte, adipocyte, and macrophage populations. Our analysis showed that the preadipocyte profile is surprisingly closer to the macrophage than to the adipocyte profile. From these data, we hypothesized that in a macrophage environment preadipocytes could effectively be converted into macrophages. We injected labeled stroma-vascular cells isolated from mouse white adipose tissue or 3T3-L1 preadipocyte cell line into the peritoneal cavity of nude mice and investigated changes in their phenotype. Preadipocytes rapidly and massively acquired high phagocytic activity and index. 60-70% of preadipocytes also expressed five macrophage-specific antigens: F4/80, Mac-1, CD80, CD86, and CD45. These values were similar to those observed for peritoneal macrophages. In vitro experiments showed that cell-to-cell contact between preadipocytes and peritoneal macrophages partially induced this preadipocyte phenotype conversion. Overall, these results suggest that preadipocyte and macrophage phenotypes are very similar and that preadipocytes have the potential to be very efficiently and rapidly converted into macrophages. This work emphasizes the great cellular plasticity of adipose precursors and reinforces the link between adipose tissue and innate immunity processes.  相似文献   

16.
We investigated the effect of the specific beta(3)-adrenergic receptor agonist CL 316,243 (CL) on proliferation and functional differentiation of the Siberian hamster (Phodopus sungorus) white and brown preadipocytes in primary cell culture. Proliferation of both white and brown preadipocytes was stimulated by a general beta-adrenergic agonist (isoproterenol) but not by CL. Lipolysis of differentiated white and brown adipocytes was stimulated similarly by CL with maximum effect at 10 nM. Thermogenic properties of cells were assessed by immunodetection of UCP-1, the brown adipocyte specific uncoupling protein, and measurement of cytochrome c oxidase (COx) activity as an index of mitochondrial capacity. UCP-1 content was largely increased by CL in BAT but not in WAT cultures. Basal UCP-2 mRNA levels were similar in WAT and BAT cultures and increased by both CL and isoproterenol. COx activity of BAT cultures was twice as high as that of WAT cultures but in neither cell culture system could it be increased by beta-adrenergic stimulation. We suggest (i) that white and brown preadipocyte proliferation is increased in vitro via beta1 or beta(2), but not beta(3)-adrenergic pathways, (ii) that white and brown preadipocytes represent different cell types, and (iii) that in vitro beta-adrenergic stimulation it is not sufficient to induce complete thermogenic adaptation of brown adipocytes.  相似文献   

17.
Sirt1, a NAD+-dependent histone deacetylase, may regulate senescence, metabolism, and apoptosis. In this study, primary pig preadipocytes were cultured in DMEM/F12 medium containing 10% fetal bovine serum (FBS) with or without reagents affecting Sirt1 activity. The adipocyte differentiation process was visualized by light microscopy after Oil red O staining. Proliferation and differentiation of preadipocytes was measured using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Oil red O extraction. Expression of Sirt1, FoxO1, and adipocyte specific genes was detected with semi-quantitive RT-PCR. The results showed that Sirt1 mRNA was widely expressed in various pig tissues from different developmental stages. Sirt1 mRNA was expressed throughout the entire differentiation process of pig preadipocytes. Resveratrol significantly increased Sirt1 mRNA expression, but decreased the expression of FoxO1 and adipocyte marker gene PPARγ2. Resveratrol significantly inhibited pig preadipocyte proliferation and differentiation. Nicotinamide decreased the expression of Sirt1 mRNA, but increased the expression of FoxO1 and adipocyte specific genes. Nicotinamide greatly stimulated the proliferation and differentiation of pig preadipocytes. In conclusion, these results indicate that Sirt1 may modulate the proliferation and differentiation of pig preadipocytes. Sirt1 may down-regulate pig preadipocytes proliferation and differentiation through repression of adipocyte genes or FoxO1.  相似文献   

18.
In humans, oxoreducing 11beta-HSD-1 activity appears to be related to body fat distribution in male-type central obesity, but not in female-type peripheral obesity. We postulated that inhibition of 11beta-HSD-1 might have clinical therapeutic significance in oxoreducing mostly visceral fat and its metabolic activity. Our current study investigated the consequence at the cellular level of such inhibition. As an inhibitor of 11beta-HSD-1 activity, we used the licorice derivative carbenoxolone. Carbenoxolone has an inhibitory effect on the activity of both oxidizing 11beta-HSD-2, which converts cortisol to cortisone, and oxoreducing 11beta-HSD-1; yet, preadipocytes and adipocytes only express the latter. Preadipocytes were retrieved from omental and subcutaneous fat from healthy non-obese individuals and differentiated in vitro to mature adipocytes. Activity of 11beta-HSD-1 was assayed by measuring conversion of added 500 nM cortisone to cortisol. Expression of 11beta-HSD-1 mRNA was determined by real-time PCR, while lipolytic effects were determined by measuring glycerol and triglyceride concentration in the culture medium. Carbenoxolone decreased 11beta-HSD-1 activity in a dose-dependent manner with an IC-50 of 5X10 -6 M, but did not affect the expression of 11beta-HSD-1 mRNA. Cortisone stimulated subcutaneous, but not omental preadipocytes proliferation, an effect that was not abolished by carbenoxolone. Dexamethasone had a stimulatory effect on the maturation of both omental and subcutaneous preadipocytes. Carbenoxolone per se, either with or without cortisone, had a negative effect on preadipocyte maturation. Inhibiting 11beta-HSD-1 activity by carbenoxolone had no impact on leptin secretion. Thus, carbenoxolone has no effect on preadipocyte proliferation, but a dramatic inhibitory effect on preadipocyte differentiation into mature adipocytes. The mechanism is only partly related to its inhibitory effect on 11beta-HSD-1 activity. The present observations lend support to the presence of an intracrine loop of a hormone that is both produced from a precursor and active within the preadipocyte and adipocyte.  相似文献   

19.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

20.
Conversion to adipocytes and fatty acid composition were investigated in a clonal bone marrow preadipocyte line (H-1/A). The growing cells exhibited a fibroblastic appearance. After the cessation of growth, triacylglyceride (TG) synthesis in the cells increased as they incorporated precursor from the growth medium and became adipocytes. Hydrocortisone and insulin accelerated the TG synthesis in H-1/A cells in a dose-dependent manner when they were cultured in the growth medium containing 10% horse serum. The rate of conversion to adipocytes was reduced as the concentration of horse serum was decreased, and this reduction was not influenced by the addition of insulin and/or hydrocortisone. These results suggest that conversion to adipocytes of H-1/A cells is primarily dependent on some component(s) of the serum. Conversion to adipocytes of the cells may involve a process of differentiation since the conversion was completely inhibited when the cells were cultured in the presence of bromodeoxyuridine. Fatty acid composition was significantly different between adipose H-1/A cells and adipocytes derived from other marrow preadipocyte line MC3T3-G2/PA6 cells. Unsaturated fatty acids accounted for 76% of the fatty acid composition of adipose H-1/A cells; in contrast, saturated fatty acids constituted 65% of the fatty acid composition of the adipose MC3T3-G2/PA6 cells. These results suggest that there is a heterogeneity of preadipocytes in bone marrow. These two preadipocyte lines thus provide a useful tool for the study of marrow adipocytes and can also be used to analyze the hematopoietic microenvironment through studies of the effect of these cells on hematopoietic cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号