首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
P Rockwell  J S Krakow 《Biochemistry》1988,27(9):3512-3520
The effects of an inhibitory monoclonal antibody (mAb) raised against the beta subunit of the Escherichia coli RNA polymerase were determined on the kinetics and structural interactions during formation of the open promoter complex (RPo). Analysis of the kinetics of abortive initiation on linear and supercoiled templates of the lac and TAC16 promoters showed that abortive synthesis by mAb 210E8-RNA polymerase varied as a function of DNA topology. A kinetic analysis of RPl formation on the supercoiled lac UV5 promoter showed that mAb 210E8 effected a slight alteration in the isomerization rate and no effect on the initial rate of RNA polymerase binding to the promoter. The potent inhibition of initiation with linear promoters by mAb 210E8 was not apparent when the promoters were assayed in their supercoiled forms. Abortive synthesis with the TAC16 promoter was accompanied by an mAb 210E8 induced hindrance of ApUpU but not UpGpU synthesis. The data indicate that the inhibition by mAb 210E8 with the supercoiled TAC16 promoter is further alleviated when the spacer length is shifted from 16 base pairs (ApUpU formation) to 18 base pairs (UpGpU formation). When DNase I and dimethyl sulfate were used to probe DNA structure, mAb 210E8 was found to alter polymerase interactions with the lac promoter. DNase I footprinting indicated that the structural interactions for lac P+ promoter-RNA polymerase complexes were slightly altered in the presence of mAb 210E8. Treatment of the RNA polymerase-lac UV5 complex with dimethyl sulfate revealed an alternate mode of RNA polymerase interaction with essential guanine contacts which was intermediate between a fully protected and free promoter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
The interaction of RNA polymerases from Escherichia coli and Thermus aquaticus with lacUV5 promoter was studied at various temperatures. Using DNA-protein cross-linking induced by formaldehyde, it was demonstrated that each RNA polymerase formed a unique pattern of contacts with DNA in the open promoter complex. In the case of E. coli RNA polymerase, beta and sigma subunits were involved into formation of cross-links with the promoter, whereas in the case of T. aquaticus RNA polymerase its beta subunit formed the cross-links with the promoter. A cross-linking pattern in promoter complexes of a hybrid holoenzyme comprised of the core-enzyme of E. coli and sigma subunit of T. aquaticus was similar to that of the E. coli holoenzyme. This suggests that DNA-protein contacts in the promoter complex are primarily determined by the core-enzyme of RNA polymerase. However, temperature-dependent behavior of contact formation is determined by the sigma subunit. Results of the present study indicate that the method of formaldehyde cross-linking can be employed for elucidation of differences in the structure of promoter complexes of RNA polymerases from various bacteria.  相似文献   

13.
We have established conditions that stabilize the interaction between RNA polymerase and the rrnB P1 promoter in vitro. The requirements for quantitative complex formation are unusual for E. coli promoters: (1) The inclusion of a competitor is required to allow visualization of a specific footprint. (2) Low salt concentrations are necessary since complex formation is salt sensitive. (3) The addition of the initiating nucleotides ATP and CTP, resulting in a low rate of dinucleotide production, is required in order to prevent dissociation of the complexes. The complex has been examined using DNAase I footprinting and filter binding assays. It is characterized by a region protected from DNAase I cleavage that extends slightly upstream of the region protected by RNA polymerase in most E. coli promoters. We find that only one mole of active RNA polymerase is required per mole of promoter DNA in order to detect filter-bound complexes. Under the conditions measured, the rate of association of RNA polymerase with rrnB P1 is as rapid as, or more rapid than, that reported for any other E. coli or bacteriophage promoter.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The rates of formation of RNA polymerase-promoter open complexes at the galactose P2 and lactose UV5 promoters of E. coli were studied using polyacrylamide gels to separate the heparin-resistant complexes from unbound DNA. Both the apparent rate and extent of reaction at these promoters are inhibited at excess RNA polymerase. This inhibition, which can be relieved by the addition of non-promoter DNA, is interpreted to be the result of occlusion of the promoter site by nonspecifically bound polymerase. Additionally, biphasic kinetics are observed at both gal P2 and lac UV5, but not at the PR promoter of phage lambda. This behavior disappears when the concentration of RNA polymerase in the binding reaction is less than that of the promoter fragment. It is proposed that at excess enzyme nonspecifically bound polymerase molecules sliding along the DNA may "bump" closed complexes from the promoter site thereby reducing the rate of open complex formation. Kinetics mechanisms quantifying both the occlusion and bumping phenomena are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号