首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

2.
Summary The embryogenic potential of different Echinacea purpurea tissues, viz. leaf, cotyledon, and root, was investigated. Maximum embryo-induction was achieved from leaf dises cultured on Murashige and Skoog medium supplemented with benzylaminopurine (5.0 μM) and indolebutyric acid (2.5 μM) where 95% of the explants responded, yielding an average of 83 embryos per explant within 4 wk of culture. Incubation of cultures in the dark for an initial period of 14 d significantly increased the frequency of somatic embryogenesis (6–8-fold in leaf explants). Exposure of the abaxial surface of leaves to the medium significantly increased the number of embryos. Transfer of somatic embryos to a medium devoid of growth regulators resulted in 80% germination within 7 d. Over 73% of the somatic embryos developed roots within 28 d of culture on a medium containing naphthaleneacetic acid (10 μM) with a maximum root number of 9.8 per plantlet. Transplanting ex vitro and acclimatization for a period of 7 d were sufficient to promote establishment of plants in the greenhouse, and more than 90% of the regenerated plants survived.  相似文献   

3.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

4.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

5.
Summary In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.  相似文献   

6.
Summary A highly reproducible method for regeneration of Coffea arabica and C. canephora plants via direct somatic embryogenesis from cultured leaf and stem segments of regenerated plants was developed. Embryogenesis was influenced by the presence of triacontanol (TRIA) in the medium. TRIA incorporated at 4.55 and 11.38 μM in half-strength MS basal medium containing 1.1 μM 6-benzyladenine (BA) and 2.28 μM indole-3-acetic acid (IAA) induced direct somatic embryogenesis in both species. A maximum of 260±31.8 and 59.2±12.8 somatic embryos per culture were induced from in vitro leaf explants of C. arabica and C. canephora, respectively. TRIA also induced embryo formation from in vitro stem segment callus tissues along with multiplication of primary embryos into secondary embryos. By using TRIA, it was possible to obtain somatic embryogenesis in C. arabica and C. canephora.  相似文献   

7.
Summary Regeneration of plants via somatic embryogenesis was achieved from zygotic embryo explants isolated from mature seeds of Schisandra chinensis. Merkle and Sommer's medium, fortified with 2,4-dichlorophenoxyacetic acid (2,4-D; 9.04 μM) and zeatin (0.09 μM), was effective for induction of embryogenic callus. The development of a proembryogenic mass and somatic embryos occurred on Murashige and Skoog medium (MS) free of plant growth regulators. The embryogenic callus induced on Merkle and Sommer's medium supplemented with 2,4-D (9.04 μM) and zeatin (0.09 μM) showed development of the maximum number of somatic embryos when transferred to MS medium free of plant growth regulators. The maximum maturation and germination of cotyledonary somatic embryos (46.3%) occurred on MS medium supplemented with 2,4-D (0.45 μM) and N6-benzyladenine (1.11 μM). The somatic embryo-derived plants were successfully hardned, with a survival rate of approximately 67%, and established in the field.  相似文献   

8.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

9.
Summary In vitro propagation of Quassia amara L. (Simaroubaceae) was attempted using mature and juvenile explants. Attempts to establish in vitro culture using leaf and internode explants from a plant more than 15yr old were unsuccessful due to severe phenolic exudation. Plant regeneration through direct and indirect somatic embryogenesis was established from cotyledon explants. Murashige and Skoog (MS) medium with 8.9 μM N6-benzyladenine (BA) and 11.7 μM silver nitrate induced the highest number (mean of 32.4 embryos per cotyledon) of somatic embryos. Direct somatic embryogenesis as well as callus formation was observed on medium with BA (8.9–13.3 μM). Semi-mature pale green cotyledons were superior for the induction of somatic embryos. Embryos developed from the adaxial side as well as from the point of excision of the embryonic axis. More embryos were developed on the proximal end compared to mid and distal regions of the cotyledons. Subculture of callus (developed along with the somatic embryos on medium with BA alone) onto medium containing 8.9 μM BA and 11.7 μM silver nitrate produced a mean of 17.1 somatic embryos. Primary somatic embryos cultured on MS medium with 8.9 μM BA and 11.7μM silver nitrate produced a mean of 9.4 secondary somatic embryos. Most of the embryos developed up to early cotyledonary stage. Reduced concentration of BA (2.2 or 4.4 μM) improved maturation and conversion of embryos to plantlets. Ninety percent of the embryos converted to plantlets. The optimized protocol facilitated recovery of 30 plantlets per cotyledon explant within 80d. Plantlets transferred to small cups were subsequently transferred to field conditions with a survival rate of 90%.  相似文献   

10.
Summary An in vitro culture procedure was established for somatic embryogenesis and plant regeneration from callus cultures of the important palm ‘betel nut’ (Areca catechu L.). Segments of zygotic embryos of Areca catechu L. were cultured on Murashige and Skoog basal medium supplemented with dicamba (9.05, 18.1, 27.15, and 36.2 μM). After 7–8 wk in darkness, wounded regions of explants formed callus with yellow, soft, glutinous structures. Proliferation and maintenance of callus was on the same dicamba-containing medium. With regular subculture every 8 wk, the callus showed pale yellow, compact and nodular structures. During subculture, somatic embryos were formed spontaneously from nodular callus tissues within 2–4 mo. The embryos developed into plantlets after 10 wk of culture on basal medium free of plant growth regulators. After subculturing every month for 3 mo., the plantlets were transferred to containers for acclimatization in the greenhouse. The survival rate was 24%.  相似文献   

11.
Summary This study reports a protocol for successful micropropagation of Decalepis arayalpathra (Joseph and Chandras) Venter. (Janakia arayalpathra Joseph and Chandrasekhran; Periplocaceae), a critically endangered and endemic ethnomedicinal plant in the southern forests of the Western Ghats which is overexploited for its tuberous medicinal roots by the local Kani tribes. Natural regeneration is rare and conventional propagation is difficult. Conservation of the species through micropropagation was attempted. The nodal explants of greenhouse-raised plants, were more desirable than cotyledonary nodal explants of aseptic seedlings. The basal nodes (73%) of 12–16-wk-old greenhouse-grown plants cultured in Murashige and Skoog (MS) medium containing 12.96 μM 6-benzyladenine (BA), 2.48 μM 2-isopentenyladenine (2-ip) and 2.68 μM α-naphthaleneacetic acid (NAA) formed 16–17 cm long unbranched robust solitary shoots in 8 wk. Cotyledonary nodal explants cultured in the same medium showed multiple shoot formation and axillary branching. But the shoots were thin, fragile and not suitable for mass propagation. Single nodes of a solitary shoot subcultured on MS medium containing 2.22 μM BA and 0.24 μM 2-ip together produced 9.8±0.3 nodes from 18.0±0.6 cm long shoots within 5–6 wk. The basal nodes of the shoots so formed were repeatedly subcultured to increase the stock of propagules while the 2.5–3.0 cm terminal cuttings were used for rooting. The best root induction (68%) and survival (86%) was achieved on half-strength MS medium supplemented with 1.07 μM NAA. Field-established plants showed uniform growth and phenotypic similarity to parental stock.  相似文献   

12.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

13.
Summary Indirect somatic embryogenesis, encapsulation, and plant regeneration was achieved with the rare rhoeophytic woody medicinal plant Rotula aquatica Lour. (Boraginaceae). Friable callus developed from leaf and internode explants on Murashige and Skoog (MS) medium with 0.45 μM 2,4-dichlorophenoxyacetic, acid (2,4-D) was most effective for the induction of somatic embryos. Subculture of the callus onto half-strength MS medium with the same concentration of 2,4-D resulted in highly embryogenic callus. Suspension culture was superior to solid medium culture for somatic embryogenesis. Embryogenic callus.during subsequent transfer to suspension cultures of half-strength MS medium having 0.23 μM 2,4-D induced the highest number of somatic embryos (a mean of 25.6 embryos per 100 mg callus) and the embryos were grown up to the torpedo stage. Transfer of embryos to half-strength MS basal solid medium allowed development, of 50% of the embryos to the cotyledonary stage. Of the cotyledonary embryos, 90% underwent conversion to plantlets on the same medium. Encapsulated cotyledonary embryos exhibited 100% conversion to plantlets. Ninety-five percent of the plantlets established in field conditions survived, and were morphologically identical to the mother plant.  相似文献   

14.
Summary In vitro regeneration of plants via somatic embryogenesis through cell suspension culture was achieved in horsegram. Embryogenic calluses were induced on leaf segments on solid Murashige and Skoog (MS) medium with 9.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Differentiation of somatic embryos occurred when the embryogenic calluses were transferred to liquid MS medium containing 2,4-D. Maximum frequency (33.2%) of somatic embryos was observed on MS medium supplemented with 7.9 μM 2,4-D. Cotyledonary-torpedo-shaped embryos were transferred to liquid MS medium without growth regulators for maturation and germination. About 5% of the embryos germinated into plants, which grew further on solid MS medium. The plants were hardened and established in soil. Effects of various auxins, cytokinins, carbohydrates, amino acids, and other additives on induction and germination of somatic embryos were also studied. A medium supplemented with 7.9 μM 2,4-D, 3.0% sucrose, 40 mg l−1 L-glutamine, and 1.0 μM abscisic acid was effective to achieve a high frequency of somatic embryo induction, maturation, and further development.  相似文献   

15.
A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.  相似文献   

16.
The induction of somatic embryogenesis from shoot apices and leaf explants of shoot cultures derived from 6- to 7-year-old white oak (Quercus alba L.) trees is reported in this study. Embryogenic response was obtained in two out of the three genotypes evaluated with embryo induction frequencies up to 50.7% for WOQ-1 and 3.4% for WOQ-5 genotypes. The embryogenic explants formed translucent nodular structures and cotyledonary-stage somatic embryos, which developed from callus tissue, indicating an indirect embryogenesis process. An efficient procedure was developed for WOQ-1 material on the basis of the most appropriate leaf developmental stage. Growing leaves excised from two nodes below the shoot apex showed the highest embryogenic induction index. These leaves contain cells in an undifferentiated state, as shown by the presence of precursor cells of stomata, absence of intercellular spaces and low starch content in the mesophyll cells. Nodular structures and/or somatic embryos began to arise 7–8 weeks after culture initiation, although most emerged after 9–12 weeks in culture. The sequence of application of media for somatic embryo induction was optimized with a two-step procedure consisting of culturing the explants in medium supplemented with 21.48 μM NAA and 2.22 μM BA for 8 weeks and transfer of explants into plant growth regulator-free medium for another 12 weeks. Clonal embryogenic lines were established and maintained by secondary embryogenesis. Embryo germination (30%) and plantlet conversion (16.6%) were achieved after cold storage for 2 months.  相似文献   

17.
Summary A protocol for in vitro propagation using direct induction of shoot buds from leaf explants of in vitro-raised shoots of Rosa damascena var. Jwala is reported. The present study is the first report on direct shoot regeneration in scented roses. Elite plants raised from nodal explants and maintained for over 2yr in vitro on a static liquid shoot multiplication Murashige and Skoog (MS) medium supplemented with 5.0 μM benzyladenine (BA) and 3% sucrose were used. Petioles from fully developed young leaves, obtained after 4 wk of pruning of old shoots, were found to be ideal for regeneration of shoots. Initially the explants were cultured in an induction medium [half-strength MS+3% sucrose+6.8μM thidiazuron+0.27 μM α-naphthaleneacetic acid (NAA)+17.7 μM AgNO3] and subsequently transferred to the regeneration medium (MS+2.25 μM BA+0.054 μM NAA) after 7, 14, 21, 28, and 35d. The highest shoot regeneration response (69%) was recorded when shoots were kept in the induction medium for 21 d and later transferred to regeneration medium. Histological studies revealed direct formation of shoot buds without the intervening callus phase. In vitro rooting of micro-shoots was accomplished within 2wk on half-strength MS liquid medium supplemented with 10.0 μM IBA and 3% sucrose for 1 wk in the dark and later transferred to hormone-free medium and kept in the light. Plantlets, remaining in the latter medium for 5–6 wk when transferred to soil, showed 90% survival.  相似文献   

18.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

19.
Establishment, maintenance, regeneration, and transformation of somatic embryos by both direct and indirect means (callus-mediated) was achieved for Bixa orellana, a tropical plant whose seeds produce commercially edible ‘annatto pigment,’ which mainly constitutes an apocarotenoid called bixin. Callus-mediated methodology was found to be efficient in producing a greater number of embryos in a short time. The maximum of 28 somatic embryos were produced in 16–18 weeks when immature zygotic embryonic stalks were inoculated onto Murashige and Skoog (MS) medium containing B5 vitamins supplemented with 0.44 μM benzyladenine (BA), 0.054 μM α-naphthaleneacetic acid (NAA), 2.89 μM gibberellic acid (GA3), 0.02 μM triiodobenzoic acid (TIBA), and 0.011 μM triacontanol (TRIA). Callus initiation from hypocotyl explants was obtained on MS medium supplemented with 1.07–2.14 μM NAA and 10.2 μM BA. In 3 months, somatic embryos were produced when callus was inoculated onto MS medium supplemented with 4.44 μM BA, 40 μM AgNO3, and 0.011 μM TRIA. Somatic embryos were efficiently regenerated on MS basal solid and liquid media supplemented with 0.44–4.4 μM BA, 0.54–2.69 μM NAA, 4.92 μM 2iP, 2.1 μM calcium d-pantothenate, 0.21 μM biotin, 227.7 μM cysteine HCl monohydrate, and 108.6 μM adenine sulfate. Agrobacterium tumefaciens GV 3101 harboring pCAMBIA 1305.2 binary vector-mediated stable transformation of somatic embryos exhibited a transformation frequency of 2.56%. As somatic embryogenesis in any perennial system is useful in terms of both commercial and scientific nature, this somatic embryo-based transformation protocol for the commercially important dye-yielding tropical plant B. orellana is useful for its improvement through genetic engineering.  相似文献   

20.
In vitro regeneration through somatic embryogenesis as well as organogenesis using cotyledon of a woody medicinal legume, Cassia angustifolia is reported. The cotyledons dissected from semi-mature seeds, if inoculated on Murashige and Skoog’s medium (MS) supplemented with auxin alone or in combination with cytokinin, produced direct and indirect somatic embryos. A maximum of 14.36 ± 2.26 somatic embryos per 20 mg of explants including callus were produced in 70% cultures on MS medium with 2.5 μM benzyladenine (BA) + 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Although the percentage of embryogenic cultures was higher (83.33%) at 10 μM 2,4-D + 1 μM BA, the average number of somatic embryos was much less (7.6 ± 0.85) at this level, whereas at 2.5 μM BA and 5 μM 2,4-D, there was a simultaneous formation of both somatic embryos and shoots. The somatic embryos, although started germinating on the same medium, developed into full plantlets only if transferred to MS basal with 2% sucrose. Cytokinins alone did not induce somatic embryogenesis, but formed multiple shoots. Five micromolar BA proved optimum for recurrently inducing shoots in the competent callus with a maximum average of 12.04 ± 2.10 shoots and shoot length of 2.26 ± 0.03 cm. Nearly 91.6% shoots (2–2.5 cm in size) organized an average of 5.12 ± 0.58 roots on half strength MS + 10 μM indole-3-butyric acid. All the plantlets have been transferred successfully to soil. Types of auxin and its interaction with cytokinin significantly influenced somatic embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号