首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Apelin/APJ系统在人与动物组织中广泛分布,不仅参与维持生理稳态,也参与多种疾病的病理生理过程。越来越多的证据表明,apelin/APJ系统具有神经保护作用,能对抗兴奋性毒性损伤、氧化应激损伤以及损伤诱导的神经元凋亡。本文现就apelin/APJ系统神经保护作用及其机制的相关研究进展作一综述。  相似文献   

2.
脂肪组织不仅储存能量,更可通过分泌多种脂肪因子调节胰岛素的敏感性和能量代谢平衡。Apelin是由脂肪组织产生和分泌的一类新型脂肪因子,其受体为血管紧张素1型受体(APJ),为G蛋白偶联受体家族的成员之一。迄今为止,apelin是APJ的唯一天然内源性配体。研究证明,apelin与心血管功能、内分泌调节、食物摄入、细胞增殖、免疫调节、体液平衡和血管生成密切相关。且apelin可以通过内分泌、旁分泌、自分泌等方式作用于不同组织,从而参与肥胖及相关疾病的发生与发展。本文对近年来apelin在各类组织中的能量代谢调节作用及信号通路等方面的研究进行了归纳,并对apelin/APJ系统在治疗代谢紊乱疾病等的前景进行了展望。  相似文献   

3.
Apelin(APJendogenousligand)是血管紧张素Ⅱ1型受体相关蛋白(angiotensin receptor-like 1,APJ)的内源性配体.Apelin/APJ系统在机体内广泛分布,在众多血管系统表达水平较高,如心血管系统、肺血管系统等.研究发现,apelin可调节血管张力,促进血管平滑肌细胞增殖、视网膜血管新生以及单核细胞向内皮细胞黏附,促进肝门静脉和冠状动脉侧枝形成等.本文就apelin调节血管功能及其相关疾病(高血压、肺动脉高压、动脉粥样硬化、胶质瘤、肺癌、门静脉高压、糖尿病血管并发症等)进行综述,揭示了apelin与血管及其相关疾病的内在联系,表明apelin/APJ可作为血管疾病的治疗靶点.  相似文献   

4.
美国桑福德-伯纳姆医学研究所和斯坦福大学医学院的研究人员Pilar Ruiz-Lozano博士等于2012年8月16日在《自然》杂志(Nature)上发表了一篇关于APJ与心肌肥厚的关系及其机制研究的论文,发现在主动脉缩窄术构建的压力负荷大鼠模型中,APJ基因敲除的大鼠和apelin基因敲除的大鼠表现出不同的心肌肥厚和心力衰竭进程[1].该研  相似文献   

5.
心肌祖细胞增殖和分化是心脏损伤后修复再生的基础,而Isl1被认为是心肌祖细胞的特异性标志。为了研究以及示踪Isl1+心肌祖细胞及其分化后代,该文尝试利用成簇规律间隔短回文重复序列CRISPR/Cas9系统,将Cre ERT2定点插入到小鼠Isl1内源基因启动子之后,建立了Cre ERT2基因敲入小鼠模型。通过与Rosa26-lox P-neo-lox P-lac Z小鼠(Rosa26-lac Z+)交配,获得Isl1-Cre ERT(KI)/Rosa26-lac Z+双杂合小鼠。经过基因型鉴定、组织表达谱测定和X-gal染色、冰冻切片和石蜡切片等方法,确认基因敲入小鼠的Cre ERT2表达在成年小鼠心脏窦房结、心脏神经节、主动脉弓和肺动脉根部,与文献报道的Isl1表达部位相同。该研究建立的模型可为研究心肌祖细胞的增殖和谱系示踪提供重要的模型。  相似文献   

6.
目的:探讨游泳运动对大鼠肺组织新的小分子活性肽apelin及其受体(APJ)表达的影响。方法:45只雄性大鼠随机分成三组:正常对照组、低氧组(七周)和游泳组(低氧+游泳锻炼七周组,低氧3周后,于每天入低氧舱前行无负重游泳运动60 min,每天1次)。七周后测定各组大鼠平均肺动脉压(mPAP)、右心室与左心室加室间隔的重量比[RV/(LV+S)]、肺细小动脉管壁面积/管总面积(WA/TA)、管腔面积/管总面积(CA/TA)及中膜厚度(PAMT)。免疫蛋白印迹与免疫组化法测定肺组织apelin/APJ的蛋白表达。结果:①低氧组mPAP和RV/(LV+S)比正常对照组分别高73.6%和31.2%(P均<0.01),而游泳组比低氧组分别低21.1%和8.9%(P均<0.05)。②低氧组WA/TA和PAMT较正常对照组分别高70.8%和102%,而游泳组较低氧组分别低24.8%和40.1%(P均<0.01)。低氧组CA/TA较正常对照组低15.1%,而游泳组较低氧组高10.3%(P均<0.01)。③低氧组肺组织apelin蛋白表达较正常对照组上调374%(P<0.01),而APJ蛋白表达下调87.1%(P均<0.01);游泳组肺组织apelin蛋白表达较低氧组下调48%,而APJ蛋白表达上调287%(P均<0.01)。④apelin蛋白主要在血管外膜及炎症细胞胞浆内表达,APJ蛋白主要在血管内膜、外膜及炎症细胞上表达。结论:游泳运动减缓肺动脉高压和肺血管重塑作用可能与调节肺组织apelin/APJ系统的表达有关。  相似文献   

7.
Apelin是1998年发现的孤儿G蛋白偶联受体APJ(又称为血管紧张素Ⅱ受体样受体1)的内源性配体,其前体由77个氨基酸残基组成,剪切后生成具有生物活性的apelin。Apelin具有调节血压、心脏收缩力、免疫反应、饮水和摄食的作用。Sorli SC等先前已经证明apelin能够促进内皮细胞有丝分裂  相似文献   

8.
细胞移植是一种有希望的组织再生的治疗手段.多种类型的细胞已经用于动物心 肌损伤的修复中,包括胚胎干细胞、胚胎和新生动物的心肌细胞、骨骼肌成肌细胞、 骨髓干细胞、脂肪来源的干细胞、可诱导的多能干细胞等.但是,这些用于移植的细胞 存在成活率低、在心脏局部存留少、与宿主心肌细胞不能整合和免疫排斥等问题,这 些问题限制了它们的应用.心脏自身存在的干细胞因为没有其他来源细胞存在的种种 问题,因而成为备受关注的治疗心肌梗死的种子细胞.但是,心脏干/祖细胞也有自身 弊端,包括干细胞群的细胞生物学或遗传学标志没有统一,在心肌中数量极少,体外 扩增能力有限等,因而限制了心脏干/祖细胞的有效应用.如何能有效动员和促进心脏 干/祖细胞增殖,依赖于人们对心脏干/祖细胞增殖、分化、归巢的调控机制,包括心 脏干/祖细胞修复损伤心肌的分子机制的深入了解.本文将就近年来在心脏再生领域中 ,心脏干/祖细胞的研究新进展进行综述.  相似文献   

9.
MicroRNAs(miRNAs)是一类非编码小分子RNA,参与调控基因表达,也是心脏发育的重要调控者。人类发育成熟的心脏损伤后再生能力有限,并且损伤的心肌由大量增殖的成纤维细胞替代,导致心脏结构和功能的不可逆损伤。研究发现,miRNAs参与胚胎干细胞、心脏祖细胞以及成纤维细胞的增殖与分化,可促进受损心脏再生。现就miRNAs调控胚胎干细胞、心脏祖细胞和成纤维细胞介导的心脏再生作用及其潜在治疗前景进行综述。  相似文献   

10.
适宜运动是防治心脏疾病的有效方式,其作用机制尚未完全阐明,安全有效的运动处方需要系统研究。运动可使正常心肌细胞发生生理性肥大与增殖以及多种细胞因子的分泌和干细胞的有效动员,促进心肌细胞增殖分化。成体心肌细胞增殖的来源包括存活的心肌细胞、心肌干/祖细胞以及外周的骨髓间充质干细胞等。干细胞的动员、趋化归巢并分化为心肌细胞是心肌损伤修复的细胞基础。本文从心肌细胞增殖潜力、心肌梗死(MI)的干细胞治疗和运动促进MI心肌细胞增殖等三个方面综述运动促进干细胞动员,诱导内源性心肌细胞再生对MI心肌修复和心功能改善的可能机制、存在问题及相关研究进展。  相似文献   

11.
Shan PF  Lu Y  Cui RR  Jiang Y  Yuan LQ  Liao EY 《PloS one》2011,6(3):e17938
Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs), is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs) as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP) activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K). Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification.  相似文献   

12.
The peptide apelin is a high-affinity ligand for the G-protein coupled receptor APJ. Apelin/APJ signaling plays important roles in blood pressure regulation, body fluid homeostasis, and cardiovascular development. More recently, it has been recognized that apelin/APJ signaling may also be involved in tumor angiogenesis. Studies in experimental animals have shown that apelin is abundantly secreted in the milk, and the mammary gland contains high level of pre-proapelin mRNAs and apelin protein. High level of apelin mRNA is expressed in cultured human breast carcinoma cell line (Hs 578T). However, the status of apelin expression and localization in human breast carcinoma has not been studied. In the present study immunohistochemistry was performed to investigate the expression and localization of apelin in normal human breast tissue and breast carcinoma. Cytoplasmic apelin immunoreactivity was detected in the ductal and lobular epithelial cells and vascular endothelial cells of the normal breast tissue. The myoepithelial cells were negative. The malignant tumor cells of invasive ductal or lobular carcinoma also expressed similar level of immunoreactive apelin. The fuctional significance of apelin expression in normal nonlactating breast and breast carcinoma warrants further investigation.  相似文献   

13.
APJ is a G protein-coupled receptor and its endogenous ligand is apelin. Studies have shown that apelin/APJ system is widely distributed in the body, especially highly expressed in the vascular endothelial cells (ECs). Numerous reports have demonstrated that apelin/APJ system plays an important role in the regulation of ECs function. Our lab has demonstrated that apelin-13 is able to promote adhesion of monocyte-human umbilical vein EC via 14-3-3, and reactive oxygen species-autophagy signaling pathways. In this review, we concentrate on the regulatory mechanism of apelin/APJ system in EC, including promotion of proliferation, migration, and angiogenesis. Moreover, we also analyze the role of apelin/APJ on endothelial dysfunction-related diseases including atherosclerosis, diabetes, hypertension, and myocardial infarction. Finally, we summarize the most commonly used agonists and antagonists of APJ. Therefore, apelin/APJ system is expected to be a therapeutic target for the treatment of endothelial dysfunction-related diseases.  相似文献   

14.
Signaling by the peptide ligand apelin and its cognate G protein-coupled receptor APJ has a potent inotropic effect on cardiac contractility and modulates systemic vascular resistance through nitric oxide-dependent signaling. In addition, there is evidence for counterregulation of the angiotensin and vasopressin pathways. Regulatory stimuli of the apelin-APJ pathway are of obvious importance but remain to be elucidated. To better understand the physiological response of apelin-APJ to disease states such as heart failure and to elucidate the mechanism by which such a response might occur, we have used the murine model of left anterior descending coronary artery ligation-induced ischemic cardiac failure. To identify the key cells responsible for modulation and production of apelin in vivo, we have created a novel apelin-lacZ reporter mouse. Data from these studies demonstrate that apelin and APJ are upregulated in the heart and skeletal muscle following myocardial injury and suggest that apelin expression remains restricted to the endothelium. In cardiac failure, endothelial apelin expression correlates with other hypoxia-responsive genes, and in healthy animals both apelin and APJ are markedly upregulated in various tissues following systemic hypoxic exposure. Experiments with cultured endothelial cells in vitro show apelin mRNA and protein levels to be increased by hypoxia, through a hypoxia-inducible factor-mediated pathway. These studies suggest that apelin-expressing endothelial cells respond to conditions associated with heart failure, possibly including local tissue hypoxia, and modulate apelin-APJ expression to regulate cardiovascular homeostasis. The apelin-APJ pathway may thus provide a mechanism for systemic endothelial monitoring of tissue perfusion and adaptive regulation of cardiovascular function.  相似文献   

15.
Wei L  Hou X  Tatemoto K 《Regulatory peptides》2005,132(1-3):27-32
The novel 36-amino acid peptide, apelin, is the endogenous ligand for the orphan receptor APJ. Apelin may play important roles in the regulation of the cardiovascular system and the hypothalamic-pituitary axis. It is a potent hypotensive agent and one of the most potent stimulators of cardiac contractility. In this study, we investigated the roles of apelin derived from adipocytes in the regulation of cardiovascular homeostasis. We found that both apelin and APJ mRNAs were expressed in isolated mouse adipocytes and that apelin mRNA levels increased during the differentiation of 3T3-L1 cells to adipocytes. We also found that the administration of insulin (1 nM-100 nM) increased, while that of dexamethasone (0.1 nM-100 nM) decreased the apelin mRNA levels in 3T3-L1 adipocytes in a dose-dependent manner, suggesting that insulin and glucocorticoids regulate apelin gene expression in adipocytes. We speculate that high glucocorticoid levels suppress apelin production and stimulate angiotensin II production in adipocyte, decreasing the counter-regulatory activity of apelin against the pressor action of angiotensin II, which might partly be involved in the mechanism underlying the development of obesity-related hypertension.  相似文献   

16.
Apela (APJ early endogenous ligand, also known as elabela or toddler) is a recently discovered peptide hormone. Based on genetic studies in zebrafish, apela was found to be important for endoderm differentiation and heart development during embryogenesis. Although common phenotypes of apela and APJ-null zebrafish during embryonic development suggested that apela interacts with the APJ receptor, kinetics of apela binding to APJ and intracellular signaling pathways for apela remain unknown. The role of apela in adults is also uncertain. Using a chimeric apela ligand, we showed direct binding of apela to APJ with high affinity (Kd = 0.51 nm) and the ability of apelin, the known peptide ligand for APJ, to compete for apela binding. Apela, similar to apelin, acts through the inhibitory G protein pathway by inhibiting forskolin-stimulated cAMP production and by inducing ERK1/2 phosphorylation. In adult rats, apela is expressed exclusively in the kidney, unlike the wide tissue distribution of apelin. In vivo studies demonstrated the ability of apela to regulate fluid homeostasis by increasing diuresis and water intake. Dose-response studies further indicated that apela induces 2- and 5-fold higher maximal responses than apelin in ERK1/2 phosphorylation and diuresis/water intake, respectively. After designing an apela antagonist, we further demonstrated the role of endogenous ligand(s) in regulating APJ-mediated fluid homeostasis. Our results identified apela as a potent peptide hormone capable of regulating fluid homeostasis in adult kidney through coupling to the APJ-mediated Gi signaling pathway.  相似文献   

17.
Apelin and its G protein-coupled receptor APJ play important roles in blood pressure regulation, body fluid homeostasis, and possibly the modulation of immune responses. Here, we report that apelin-APJ signaling is essential for embryonic angiogenesis and upregulated during tumor angiogenesis. A detailed expression analysis demonstrates that both paracrine and autocrine mechanisms mark areas of embryonic and tumor angiogenesis. Knockdown studies in Xenopus reveal that apelin-APJ signaling is required for intersomitic vessel angiogenesis. Moreover, ectopic expression of apelin but not vascular endothelial growth factor A (VEGFA) is sufficient to trigger premature angiogenesis. In vitro, apelin is non-mitogenic for primary human endothelial cells but promotes chemotaxis. Epistasis studies in Xenopus embryos suggest that apelin-APJ signaling functions downstream of VEGFA. Finally, we show that apelin and APJ expression is highly upregulated in microvascular proliferations of brain tumors such as malignant gliomas. Thus, our results define apelin and APJ as genes of potential diagnostic value and promising targets for the development of a new generation of anti-tumor angiogenic drugs.  相似文献   

18.
In the mammalian ovary, the microvasculature in the thecal layer of follicles is associated with follicular development. Apelin and its receptor, APJ, are expressed in the tissues and organs which include the vasculature. The aims of the present study were to examine the mRNA expression of apelin and the APJ receptor in granulosa cells and theca tissue of bovine follicles and the effects of steroid hormone and gonadotrophins on the expression of these genes in cultured granulosa cells and theca cells. The expression of apelin mRNA was not found in the granulosa cells of bovine follicles. The expression of the APJ gene was increased in granulosa cells of estrogen-inactive dominant follicles. The expression of apelin mRNA increased in theca tissues of estrogen-inactive dominant follicles. APJ expression in theca tissues increased with follicle growth. Progesterone stimulated the expression of APJ mRNA in the cultured granulosa cells. FSH stimulated the expression of APJ mRNA in the cultured granulosa cells. LH induced the expression of apelin and APJ receptor mRNAs in cultured theca cells. Taken together, our data indicate that the APJ receptor in granulosa cells and both apelin and the APJ receptor in theca tissues are expressed in bovine ovary, that APJ in granulosa cells may be involved in the appearance of the cell apoptosis, and that LH stimulates the expression of apelin and APJ genes in theca cells.  相似文献   

19.
Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway.  相似文献   

20.
Apelin and its receptor are expressed in human osteoblasts   总被引:5,自引:0,他引:5  
Xie H  Tang SY  Cui RR  Huang J  Ren XH  Yuan LQ  Lu Y  Yang M  Zhou HD  Wu XP  Luo XH  Liao EY 《Regulatory peptides》2006,134(2-3):118-125
OBJECTIVES: Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor APJ. Adipocytes can express and secrete apelin. The aim of this study was to characterize apelin and APJ expression in human osteoblasts and to investigate the effects of apelin on osteoblasts. RESULTS: Apelin and APJ were expressed in human osteoblasts. Apelin stimulated proliferation of human osteoblasts, but had no effect on alkaline phosphatase (ALP) activity, osteocalcin and type I collagen production in human osteoblasts. Suppression of APJ with small-interfering RNA (siRNA) abolished the apelin-induced cell proliferation. Apelin induced activation of Akt (Phosphatidylinositol-3 kinase downstream effector), but not MAPKs, such as c-jun N-terminal Kinase (JNK), p38 and ERK1/2 in human osteoblasts. This effect was blocked by suppression of APJ with siRNA. Furthermore, LY294002 (PI3 kinase inhibitor) blocked the activation of Akt by apelin and abolished the apelin-induced cell proliferation. CONCLUSIONS: Human osteoblasts express apelin and APJ and apelin enhances human osteoblast proliferation, but has no effect on osteoblast differentiation, and APJ/PI3 kinase/Akt pathway is involved in the proliferation response. These findings suggest that apelin may function as a mitogenic agent for osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号