首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundResistance to the HER2-targeted antibody trastuzumab remains to be a major clinical challenge in the treatment of HER2-positive breast cancer. Hyper-activation of STAT3 is proposed to be a predictive biomarker of trastuzumab resistance. However, the precise mechanism(s) remains poorly defined. Evidence is emerging that HIF-1α, a central downstream element of STAT3 pathway, serves a pivotal role in the complex signaling network with subsequent diverse cellular events.Material and methodsWe have established trastuzumab resistant SKBR3 cells (SKBR3-TR). The cell viability, apoptosis as well as western blot, siRNA transfection and co-immunoprecipitation assays were performed to evaluate the involvement of STAT3/HIF-1α in modulation of trastuzumab resistance.ResultsWe found that in SKBR3-TR cells and conditioned medium-treated parental cells, constitutive phosphorylated STAT3 coincided with prominent up-regulation of HIF-1α which was accompanied with PTEN attenuation. Moreover, the inhibition of STAT3 activation by Stattic and/or genetically STAT3 knocking down decreased HIF-1α level in SKBR3-TR cells. Additionally, treatment with Stattic and/or STAT3 siRNA engendered the up-regulation of PTEN protein in STAT3-inhibited resistant cells. Restoration of PTEN was also observed following siRNA-mediated silencing of HIF-1α expression. Moreover, down-regulation of HIF-1α caused a reduction in the HES-1 content. Further study with HES-1 specific siRNA revealed the elevation of PTEN expression in HES-1 knock-down trastuzumab resistant cells.ConclusionThe impairment of STAT3-HIF-1α-HES-1 pathway restored trastuzumab sensitivity through up-regulation of PTEN protein.General significanceThese findings highlighted the signal integrator role of HIF-1α in STAT3-mediated trastuzumab resistance induction which would be valuable in designing more efficient chemosensitization strategies.  相似文献   

2.
Previous studies have demonstrated that Artemin (ARTN) functions as a cancer stem cell (CSC) and metastatic factor in mammary carcinoma. Herein, we report that ARTN mediates acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells. Ligands that increase HER2 activity increased ARTN expression in HER2-positive mammary carcinoma cells, whereas trastuzumab inhibited ARTN expression. Forced expression of ARTN decreased the sensitivity of HER2-positive mammary carcinoma cells to trastuzumab both in vitro and in vivo. Conversely, siRNA-mediated depletion of ARTN enhanced trastuzumab efficacy. Cells with acquired resistance to trastuzumab exhibited increased ARTN expression, the depletion of which restored trastuzumab sensitivity. Trastuzumab resistance produced an increased CSC population concomitant with enhanced mammospheric growth. ARTN mediated the enhancement of the CSC population by increased BCL-2 expression, and the CSC population in trastuzumab-resistant cells was abrogated upon inhibition of BCL-2. Hence, we conclude that ARTN is one mediator of acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells.  相似文献   

3.
4.
Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL6 than parental cells. An IL6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance.  相似文献   

5.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

6.
7.
Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naïve SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may be extremely helpful to design successful combinatorial strategies aimed to circumvent the occurrence of de novo resistance to HER2-directed drugs using survivin antagonists.  相似文献   

8.
Trastuzumab resistance negatively influences the clinical efficacy of the therapy for human epidermal growth factor receptor 2 (HER2) positive gastric cancer (GC), and the underlying mechanisms remain elusive. Exploring the mechanisms and finding effective approaches to address trastuzumab resistance are of great necessity. Here, we confirmed that endoplasmic reticulum (ER) stress-induced trastuzumab resistance by up-regulating miR-301a-3p in HER2-positive GC cells. Moreover, we elucidated that miR-301a-3p mediated trastuzumab resistance by down-regulating the expression of leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) and subsequently activating the expression of insulin-like growth factor 1 receptor (IGF-1R) and fibroblast growth factor receptor 1 (FGFR1) under ER stress. We also found that intercellular transfer of miR-301a-3p by exosomes disseminated trastuzumab resistance. The present study demonstrated that exosomal miR-301a-3p could serve as a non-invasive biomarker for trastuzumab resistance, which was maybe a novel potential therapeutic target to overcome trastuzumab resistance and improve the curative effect of trastuzumab in HER2-positive GC patients.Subject terms: Cancer therapeutic resistance, Gastric cancer  相似文献   

9.
10.
HER2 overexpression is associated with aggressive breast cancer with high recurrence rate and poor patient prognosis. Treatment of HER2 overexpressing patients with the HER2 targeting therapy trastuzumab results in acquired resistance within a year. The HER2/EGFR dual kinase inhibitor lapatinib was shown to inhibit some trastuzumab resistant breast cancer cell lines and is currently in clinical trials. Our group has found two new quinone compounds that show excellent inhibition of breast tumor cells expressing HER2 or the trastuzumab resistant HER2 oncogenic isoform, HER2Δ16. Compound 4 ((1R,2S,3S)-1,2,3,5,8-pentahydroxy-1,2,3,4-tetrahydroanthracene-9,10-dione) and compound 5 (5,8-dihydroxy-2,3-bis(hydroxymethyl)naphthalene-1,4-dione) showed sub-micromolar inhibition potency against these cell lines. These compounds also inhibit auto-phosphorylation of the Y1248 and Y1068 residues of HER2 and EGFR, respectively.  相似文献   

11.
Currently, resistance to trastuzumab, a human epidermal growth factor receptor 2 (HER2) inhibitor, has become one major obstacle for improving the clinical outcome of patients with advanced HER2+ breast cancer. While cell behaviour can be modulated by long non‐coding RNAs (lncRNAs), the contributions of lncRNAs in progression and trastuzumab resistance of breast cancer are largely unknown. To this end, the involvement and regulatory functions of lncRNA SNHG14 in human breast cancer were investigated. RT‐qPCR assay showed that SNHG14 was up‐regulated in breast cancer tissues and associated with trastuzumab response. Gain‐ and loss‐of‐function experiments revealed that overexpression of SNHG14 promotes cell proliferation, invasion and trastuzumab resistance, whereas knockdown of SNHG14 showed an opposite effect. PABPC1 gene was identified as a downstream target of SNHG14, and PABPC1 mediates the SNHG14‐induced oncogenic effects. More importantly, ChIP assays demonstrated that lncRNA SNHG14 may induce PABPC1 expression through modulating H3K27 acetylation in the promoter of PABPC1 gene, thus resulting in the activation of Nrf2 signalling pathway. These data suggest that lncRNA SNHG14 promotes breast cancer tumorigenesis and trastuzumab resistance through regulating PABPC1 expression through H3K27 acetylation. Therefore, SNHG14 may serve as a novel diagnostic and therapeutic target for breast cancer patients.  相似文献   

12.
BackgroundClinical trials of human epidermal growth factor receptor 2 (HER2)-targeted agents added to standard treatment have been efficacious for HER2-positive (HER2+) advanced breast cancer. To our knowledge, no meta-analysis has evaluated HER2-targeted therapy including trastuzumab emtansine (T-DM1) and pertuzumab for HER2-positive breast caner and ranked the targeted treatments. We performed a network meta-analysis of both direct and indirect comparisons to evaluate the effect of adding HER2-targeted agents to standard treatment and examined side effects.MethodsWe performed a Bayesian-framework network meta-analysis of randomized controlled trials to compare 6 HER2-targeted treatment regimens and 1 naïve standard treatment (NST, without any-targeted drugs) in targeted treatment of HER2+ breast cancer in adults. These treatment regimens were T-DM1, LC (lapatinib), HC (trastuzumab), PEC (pertuzumab), LHC (lapatinib and trastuzumab), and PEHC (pertuzumab and trastuzumab). The main outcomes were overall survival and response rates. We also examined side effects of rash, LVEF (left ventricular ejection fraction), fatigue, and gastrointestinal disorders, and performed subgroup analysis for the different treatment regimens in metastatic or advanced breast cancer.ResultsWe identified 25 articles of 21 trials, with data for 11,276 participants. T-DM1 and PEHC were more efficient drug regimens with regard to overall survival as compared with LHC, LC, HC and PEC. The incidence of treatment-related rash occurs more frequently in the patients who received LC treatment regimen than PEHC and T-DM1 and HC. In subgroup analysis, T-DM1 was associated with increased overall survival as compared with LC and HC. PEHC was associated with increased overall response as compared with LC, HC, and NST.ConclusionsOverall, the regimen of T-DM1 as well as pertuzumab in combination with trastuzumab and docetaxel is efficacious with fewer side effects as compared with other regimens, especially for advanced HER2+ breast cancer.ImpactThis study suggests that both T-DM1 and PEHC therapy are potentially and equally useful treatments for HER2+ breast cancer.  相似文献   

13.
Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.  相似文献   

14.
15.
目的:观察曲妥珠单抗(Trastuzumab)与转录信号转导子与激活子3蛋白(STAT3)抑制剂NSC 74859联用对曲妥珠耐药细胞株SK-BR-3R的生长抑制作用及机理研究。方法:采用四甲基偶氮唑蓝(MTT)法鉴定曲妥珠耐药的SK-BR-3R细胞株并检测曲妥珠单药处理、NSC 74859单药处理以及两药联用处理对SK-BR-3R细胞的生长抑制程度。建立SK-BR-3R的皮下肿瘤模型,观察两药联用对肿瘤生长的抑制效果;通过免疫印迹(Western Blot)实验检测SK-BR-3R细胞中磷酸化HER2(p-HER2),磷酸化STAT3(p-STAT3)及磷酸化AKT(p-AKT)的水平。结果:当曲妥珠浓度在50 nmol/L及NSC 74859的浓度在50μmol/L联用时,较之两药单用显示了显著的抑制效果,其差异具有统计学意义;进一步在建立的SK-BR-3R小鼠肿瘤模型中观察到了曲妥珠联合NSC74859治疗组显示了比曲妥珠或NSC 74859单独使用时更显著的抑瘤效果。最后,免疫印迹实验显示了曲妥珠和NSC74859联合处理显著降低了SK-BR-3R细胞的HER2,STAT3及AKT的磷酸化水平。结论:曲妥珠单抗联合NSC 74859使用可显著抑制曲妥珠耐药的乳腺癌细胞SK-BR-3R的生长,其机制可能是药物协同抑制了对肿瘤生长重要的PI3K/AKT信号通路。本研究可为临床上治疗曲妥珠耐药的乳腺癌提供参考。  相似文献   

16.
HER2-overexpressing breast cancers are characterized by frequent distant metastasis and often develop resistance after short-term effective treatment with the monoclonal antibody drug, trastuzumab. Here, we found that the oncogenic miRNA, miR-221, inhibited apoptosis, induced trastuzumab resistance and promoted metastasis of HER2-positive breast cancers. The tumor suppressor PTEN was identified as a miR-221 target; overexpression of PTEN abrogated the aforementioned miR-221-induced malignant phenotypes of the cells. These findings indicate that miR-221 may promote trastuzumab resistance and metastasis of HER2-positive breast cancers by targeting PTEN, suggesting its role as a potential biomarker for progression and poor prognosis, and as a novel target for trastuzumab-combined treatment of breast cancers. [BMB Reports 2014; 47(5): 268-273].  相似文献   

17.
Trastuzumab has led to improved survival rates of HER2+ breast cancer patients. However, acquired resistance remains a problem in the majority of cases. t-Darpp is over-expressed in trastuzumab-resistant cell lines and its over-expression is sufficient for conferring the resistance phenotype. Although its mechanism of action is unknown, t-Darpp has been shown to increase cellular proliferation and inhibit apoptosis. We have reported that trastuzumab-resistant BT.HerR cells that over-express endogenous t-Darpp are sensitized to EGFR inhibition in the presence (but not the absence) of trastuzumab. The purpose of the current study was to determine if t-Darpp might modulate sensitivity to EGFR inhibitors in trastuzumab-resistant cells. Using EGFR tyrosine kinase inhibitors AG1478, gefitinib and erlotinib, we found that trastuzumab-resistant SK.HerR cells were sensitized to EGFR inhibition, compared to SK-Br-3 controls, even in the absence of trastuzumab. t-Darpp knock-down in SK.HerR cells reversed their sensitivity to EGFR inhibition. Increased EGFR sensitivity was also noted in SK.tDp cells that stably over-express t-Darpp. High levels of synergy between trastuzumab and the EGFR inhibitors were observed in all cell lines with high t-Darpp expression. These cells also demonstrated more robust activation of EGFR signaling and showed greater EGFR stability than parental cells. The T75A phosphorylation mutant of t-Darpp did not confer sensitivity to EGFR inhibition nor activation of EGFR signaling. The over-expression of t-Darpp might facilitate enhanced EGFR signaling as part of the trastuzumab resistance phenotype. This study suggests that the presence of t-Darpp in HER2+ cancers might predict the enhanced response to dual HER2/EGFR targeting.  相似文献   

18.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   

19.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

20.
HER2 is a receptor tyrosine kinase that is overexpressed in 20% to 30% of human breast cancers and which affects patient prognosis and survival. Treatment of HER2-positive breast cancer with the monoclonal antibody trastuzumab (Herceptin) has improved patient survival, but the development of trastuzumab resistance is a major medical problem. Many of the known mechanisms of trastuzumab resistance cause changes in protein phosphorylation patterns, and therefore quantitative proteomics was used to examine phosphotyrosine signaling networks in trastuzumab-resistant cells. The model system used in this study was two pairs of trastuzumab-sensitive and -resistant breast cancer cell lines. Using stable isotope labeling, phosphotyrosine immunoprecipitations, and online TiO2 chromatography utilizing a dual trap configuration, ∼1700 proteins were quantified. Comparing quantified proteins between the two cell line pairs showed only a small number of common protein ratio changes, demonstrating heterogeneity in phosphotyrosine signaling networks across different trastuzumab-resistant cancers. Proteins showing significant increases in resistant versus sensitive cells were subjected to a focused siRNA screen to evaluate their functional relevance to trastuzumab resistance. The screen revealed proteins related to the Src kinase pathway, such as CDCP1/Trask, embryonal Fyn substrate, and Paxillin. We also identify several novel proteins that increased trastuzumab sensitivity in resistant cells when targeted by siRNAs, including FAM83A and MAPK1. These proteins may present targets for the development of clinical diagnostics or therapeutic strategies to guide the treatment of HER2+ breast cancer patients who develop trastuzumab resistance.HER2 is a member of the epidermal growth factor receptor (EGFR)/ErbB family of receptor tyrosine kinases. Under normal physiologic conditions, HER2 tyrosine kinase signaling is tightly regulated spatially and temporally by the requirement for it to heterodimerize with a ligand bound family member, such as EGFR, HER3/ErbB3, or HER4/ErbB4 (1). However, in 20% to 30% of human breast cancer cases, HER2 gene amplification is present, resulting in a high level of HER2 protein overexpression and unregulated, constitutive HER2 tyrosine kinase signaling (2, 3). HER2 gene amplified breast cancer, also termed HER2-positive breast cancer, carries a poor prognosis, but the development of the HER2 targeted monoclonal antibody trastuzumab (Herceptin) has significantly improved patient survival (2). Despite the clinical effectiveness of trastuzumab, the development of drug resistance significantly increases the risk of patient death. This poses a major medical problem, as most metastatic HER2-positive breast cancer patients develop trastuzumab resistance over the course of their cancer treatment (4). The treatment approach for HER2+ breast cancer patients after trastuzumab resistance develops is mostly a trial-and-error process that subjects the patient to increased toxicity. Therefore, there is a substantial medical need for strategies to overcome trastuzumab resistance.Multiple trastuzumab-resistance mechanisms have been identified, and they alter signaling networks and protein phosphorylation patterns in either a direct or an indirect manner. These mechanisms can be grouped into three categories. The first category is the activation of a parallel signaling network by other tyrosine kinases. These kinases include the receptor tyrosine kinases, EGFR, IGF1R, Her3, Met, EphA2, and Axl, as well as the erythropoietin-receptor-mediated activation of the cytoplasmic tyrosine kinases Jak2 and Src (511). The second category is the activation of downstream signaling proteins. Multiple studies have demonstrated activation of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway in trastuzumab resistance, which occurs either via deletion of the PTEN lipid phosphatase or mutation of the PI3K genes (12, 13). Activation of Src family kinases or overexpression of cyclin E, which increases the cyclin E–cyclin-dependent kinase 2 signaling pathway, has also been reported (14). The third category includes mechanisms that maintain HER2 signaling even in the presence of trastuzumab. The production of a truncated isoform of HER2, p95HER2, which lacks the trastuzumab binding site, causes constitutive HER2 signaling (15, 16). Overexpression of the MUC4 sialomucin complex inhibits trastuzumab binding to HER2 and thereby maintains HER2 signaling (17, 18).Given that multiple trastuzumab-resistance mechanisms alter signaling networks and protein phosphorylation patterns, we reasoned that mapping phosphotyrosine signaling networks using quantitative proteomics would be a highly useful strategy for analyzing known mechanisms and identifying novel mechanisms of trastuzumab resistance. Quantitative proteomics and phosphotyrosine enrichment approaches have been extensively used to study the EGFR signal networks (1923). We and others have used these approaches to map the HER2 signaling network (22, 24, 25). Multiple other tyrosine kinase signaling networks were analyzed using quantitative proteomics, including Ephrin receptor, EphB2 (2628), platelet-derived growth factor receptor (PDGFR) (21), insulin receptor (29, 30), and the receptor for hepatocyte growth factor, c-MET (31).The goal of this study is to identify, quantify, and functionally screen proteins that might be involved in trastuzumab resistance. We used two pairs of HER2 gene amplified trastuzumab-sensitive (parental, SkBr3 and BT474) and -resistant (SkBr3R and BT474R) human breast cancer cell lines as models for trastuzumab resistance. These cell lines and their trastuzumab-resistant derivatives have been extensively characterized and highly cited in the breast cancer literature (32, 33). Using stable isotope labeling of amino acids in cell culture (SILAC),1 phosphotyrosine immunoprecipitations, and online TiO2 chromatography with dual trap configuration, we quantified the changes in phosphotyrosine containing proteins and interactors between trastuzumab-sensitive and -resistant cells. Several of the known trastuzumab-resistance mechanisms were identified, which serves as a positive control and validation of our approach, and large protein ratio changes were measured in proteins that had not been previously connected with trastuzumab resistance. We then performed a focused siRNA screen targeting the proteins with significantly increased protein ratios. This screen functionally tested the role of the identified proteins and identifies which proteins might have the largest effect on reversing trastuzumab resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号