首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past few years and with the use of innovative genomic and proteomic tools, several molecules that their urinary concentration is modified during acute kidney injury have been identified and proposed as biomarkers. Among the most studied biomarkers are neutrophil gelatinase-associated lipocalin-2, kidney injury molecule-1, interleukin-18, cystatin C, N-acetyl-β-D-glucosaminidase, liver fatty-acid binding protein, and heat shock protein 72. Here, we reviewed and compared the sensitivity and specificity of each biomarker for the appropriate diagnosis of acute kidney injury, as well as its ability to stratify renal injury and to monitor a renoprotective pharmacologic strategy.  相似文献   

2.
Activation of the renin-angiotensin system (RAS) plays a pivotal role in mediating hypertension, chronic kidney and cardiovascular diseases. As Wnt/β-catenin regulates multiple RAS genes, we speculated that this developmental signaling pathway might also participate in blood pressure (BP) regulation. To test this, we utilized two rat models of experimental hypertension: chronic angiotensin II infusion and remnant kidney after 5/6 nephrectomy. Inhibition of Wnt/β-catenin by ICG-001 blunted angiotensin II-induced hypertension. Interestingly, angiotensin II was able to induce the expression of multiple Wnt genes in vivo and in vitro, thereby creating a vicious cycle between Wnt/β-catenin and RAS activation. In the remnant kidney model, renal β-catenin was upregulated, and delayed administration of ICG-001 also blunted BP elevation and abolished the induction of angiotensinogen, renin, angiotensin-converting enzyme and angiotensin II type 1 receptor. ICG-001 also reduced albuminuria, serum creatinine and blood urea nitrogen, and inhibited renal expression of fibronectin, collagen I and plasminogen activator inhibitor-1, and suppressed the infiltration of CD3+ T cells and CD68+ monocytes/macrophages. In vitro, incubation with losartan prevented Wnt/β-catenin-mediated fibronectin, α-smooth muscle actin and Snail1 expression, suggesting that the fibrogenic action of Wnt/β-catenin is dependent on RAS activation. Taken together, these results suggest an intrinsic linkage of Wnt/β-catenin signaling with BP regulation. Our studies also demonstrate that hyperactive Wnt/β-catenin can drive hypertension and kidney damage via RAS activation.  相似文献   

3.
Acute kidney injury (AKI) is the most common kidney disease in hospitalized patients with high mortality. Ischemia and reperfusion (I/R) is one of the major causes of AKI. The combination of α-ketoglutarate+malate (αKG/MAL) showed the ability to reduce hypoxia-induced damage to isolated proximal tubules. The present study utilizes a rat model of I/R-induced AKI accompanied by intensive biomonitoring to examine whether αKG/MAL provides protection in vivo. AKI was induced in male Sprague-Dawley rats by bilateral renal clamping (40 min) followed by reperfusion (240 min). αKG/MAL was infused continuously for 60 min before and 45 min after ischemia. Normoxic and I/R control groups received 0.9% NaCl solution. The effect of αKG/MAL was evaluated by biomonitoring, blood and plasma parameters, histopathology, and immunohistochemical staining for kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), as well as by determination of tissue ATP and nonesterified fatty acid concentrations. Intravenous infusion of αKG/MAL at a cumulative dose of 1 mmol/kg each (146 mg/kg αKG and 134 mg/kg MAL) did not prevent I/R-induced increases in plasma creatinine, histopathological alterations, or cortical ATP depletion. On the contrary, the most notable adverse affect in animals receiving αKG/MAL was the decrease in mean arterial blood pressure, which was also accompanied by a reduction in heart rate. Supplementation with αKG/MAL, which is very protective against hypoxia-induced injury in isolated proximal tubules, does not protect against I/R-induced renal injury in vivo, possibly due to cardiovascular depressive effects.  相似文献   

4.
5.
《Biomarkers》2013,18(8):709-717
Context: Urinary α-glutathione S-transferase (α-GST) and π-glutathione S-transferase (π-GST) are promising proximal and distal tubular leakage markers for early detection of acute kidney injury (AKI).

Objective: To examine the performance of these markers for predicting the composite of dialysis requirement or in-hospital death in patients with an established diagnosis of AKI.

Materials and methods: Prospective cohort study of 245 adults with AKI. A single urinary α-GST and π-GST measurement was obtained at time of nephrology consultation.

Results: Overall, urinary π-GST performed better than α-GST for prediction of dialysis requirement (AUC 0.59 vs. 0.56), and the composite outcome (AUC 0.58 vs. 0.56). In subgroup analyses, π-GST displayed better discrimination for prediction of dialysis requirement in patients with baseline eGFR <60?mL/min/1.73 m2 (AUC 0.61) and oliguria (AUC 0.72). Similarly, α-GST performed better in patients with stage-1 (AUC 0.66) and stage-2 AKI (AUC 0.80).

Conclusions: In patients with an established diagnosis of AKI, a single urinary π-GST measurement performed better than α-GST at predicting dialysis requirement or death, but neither marker had good prognostic discrimination.  相似文献   

6.
Acute kidney injury (AKI) represents a common disorder in hospitalized patients, and its incidence is rising at an alarming rate. Despite significant improvements in critical care and renal replacement therapies (RRT), the outcome of critically ill patients with AKI necessitating RRT remains unacceptably dismal. In current clinical practice, the diagnosis and severity classification of AKI is based on a rise in serum creatinine levels, which may occur 2-3 days after the initiating renal insult and delay potentially effective therapies that are limited to the early stage. The emergence of numerous renal tubular damage-specific biomarkers offers an opportunity to diagnose AKI at an early timepoint, to facilitate differential diagnosis of structural and functional AKI, and to predict the outcome of established AKI. The purposes of this review are to summarize and to discuss the performance of these novel AKI biomarkers in various clinical settings. The most promising AKI biomarkers include plasma and urinary neutrophil gelatinase-associated lipocalin (NGAL), urinary interleukin (IL)-18, urinary liver-type fatty acid binding protein (L-FABP), urinary cystatin C, and urinary kidney injury molecule (KIM)-1. However, enthusiasm about their usefulness in the emergency department seems unwarranted at present. There is little doubt that urinary biomarkers of nephron damage may enable prospective diagnostic and prognostic stratification in the emergency department. However, comparison of the areas under the receiver-operating characteristic curves of these biomarkers with clinical and/or routine biochemical outcome parameters reveals that none of these biomarkers has a clear advantage beyond the traditional approach in clinical decision making in patients with AKI. The performance of various biomarkers for predicting AKI in patients with sepsis or with acute-on-chronic kidney disease is poor. The inability of biomarkers to improve classification of 'unclassifiable' (structural or functional) AKI, in which accurate differential diagnosis of pre-renal versus intrinsic renal AKI has the most value, illustrates another problem. Future research is necessary to clarify whether serial measurements of a specific biomarker or the use of a panel of biomarkers may be more useful in critically ill patients at risk of AKI. Whether or not the use of AKI biomarkers revolutionizes critical care medicine by early diagnosis of severe AKI and individualizes the management of AKI patients remains to be shown. Currently, the place of biomarkers in this decision-making process is still uncertain. Indiscriminate use of various biomarkers may distract clinicians from adequate clinical evaluation, may result in worse instead of better patient outcomes, and may waste money. Future large randomized studies are necessary to demonstrate the association between biomarker levels and clinical outcomes, such as dialysis, clinical events, or death. It needs to be shown whether assignment to earlier treatment for AKI on the basis of generally accepted biomarker cut-off levels results in a reduction in mortality and an improvement in recovery of renal function.  相似文献   

7.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro-inflammatory and pro-adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN-KO) mice and cultured macrophages. It was found that FKN and Wnt/β-catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS-induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β-catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β-catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS-induced AKI. Although LPS-induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β-catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

8.
Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors α (PPARα) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs.Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.  相似文献   

9.
The presence of a precursor form of β-glucuronidase, with a subunit molecular weight of 75,000 was demonstrated in mouse kidney. This was later processed to the mature form, with subunit molecular weight of 71,500. Tissue fractionation revealed that the precursor was associated with the microsomes whereas the mature form was associated with the lysosomes. In mice lacking egasyn both forms of β-glucuronidase were present, but the rate of processing was elevated compared to normal.  相似文献   

10.
1. delta-Aminolaevulate synthetase was detected in liver and kidney mitochondria prepared from normal rats. 2. The administration of allylisopropylacetamide induced an increase in delta-aminolaevulate synthetase in both liver and kidney mitochondria and the enzyme also appeared in the cytosol fraction of both tissues. Comparison with the distribution of glutamate dehydrogenase indicated that this soluble kidney delta-aminolaevulate synthetase was truly of cytosol origin and did not arise from disrupted mitochondria. The kidney cytosol enzyme was inhibited by 50% by 50mum-protohaem. 3. delta-Aminolaevulate synthetase could not be detected in mitochondria or cytosol from heart or brain from normal or porphyric rats. 4. The administration of allylisopropylacetamide caused little or no increase in ferrochelatase or cytochrome content of liver, kidney, heart or brain mitochondria.  相似文献   

11.
12.
The latter half of the nineteenth century produced a remarkable expansion of surgical practice. Although most of these new techniques and concepts were soundly based, others, such as the movable or floating kidney, were later ridiculed and discredited.In Glasgow Royal Infirmary during the 48 years from 1880, when movable kidney was first mentioned in the annual reports of the hospital, to 1928 472 patients (89% female) were diagnosed as suffering from the condition. Nearly half of them (216) underwent operation and the operative mortality was low. In the first decade of this century an average of 18 cases a year were admitted to the wards of the infirmary. From 1915 to 1920 the number of cases dropped, as did the proportion undergoing operation, but in the 1920s the numbers increased again.In common with other ineffective treatments for imaginary diseases, operations for the movable kidney simply faded away in Britain in the 1930s.  相似文献   

13.
The “enkephalinase” i.e. the metallopeptidase cleaving the Gly3-Phe4 amide bond of enkephalins from rat kidney was studied in its membrane-bound form as well as in a highly purified preparation. It seems identical or very close to three other enzyme activities: “enkephalinase” from cerebral membranes, an endopeptidase from bovine pituitary and the “neutral endopeptidase” from rabbit kidney. Specificity constants of substrates were higher for peptides with a free terminal carboxylate as compared to amidified or typical endopeptidase substrates which were also cleaved. The dipeptidyl carboxypeptidase specificity of “enkephalinase” is attributable to the presence of a critical arginine residue in its active site.  相似文献   

14.
Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems — the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism’s death.  相似文献   

15.
Inhibition of the tumor suppressor p53 diminishes tubular cell apoptosis and protects renal function in animal models of acute kidney injury (AKI). Therefore, targeting p53 has become an attractive therapeutic strategy in the approach to AKI. Although the acute protective effects of p53 inhibition in AKI have been examined, there is still relatively little known regarding the impact of acute p53 inhibition on the chronic sequelae of AKI. Consequently, we utilized the p53 inhibitor pifithrin-α to examine the long-term effects of p53 inhibition in a rodent model of ischemic AKI. Male Sprague-Dawley rats were subjected to bilateral renal artery clamping for 30 min followed by reperfusion for up to 8 wk. Pifithrin-α or vehicle control was administered at the time of surgery and then daily for 2 days [brief acute administration (BA)] or 7 days [prolonged acute administration (PA)]. Despite the acute protective effect of pifithrin-α in models of ischemic AKI, we found no protection in the microvascular rarefaction at 4 wk or development fibrosis at 8 wk with pifithrin-α administered on the BA schedule compared with vehicle control-treated animals. Furthermore, pifithrin-α administered on a PA schedule actually produced worse fibrosis compared with vehicle control animals after ischemic injury [21%/area (SD4.4) vs.16%/area (SD3.6)] as well as under sham conditions [2.6%/area (SD1.8) vs. 4.7%/area (SD1.3)]. The development of fibrosis with PA administration was independent of microvascular rarefaction. We identified enhanced extracellular matrix production, epithelial-to-mesenchymal transition, and amplified inflammatory responses as potential contributors to the augmented fibrosis observed with PA administration of pifithrin-α.  相似文献   

16.
Transforming growth factor- (TGF-) is a homodimeric polypeptide of 25 kDa, which regulates cell growth and differentiation and influences extracellular matrix metabolism. Using immunochemical techniques, we identified TGF- in the loops of Henle and the collecting and Bellini ducts of rat kidney and in the loops of Henle of chicken kidney. Furthermore, we detected two TGF--immunoreactive proteins on kidney blots of the rat of 12.5 and 47 kDa, and three on chicken kidney blots of 12.5, 34, and 47 kDa. We suggest that the precursor forms of rat and chicken TGF-2 or 3, chicken TGF-4, and the mature form of all of them are expressed in the collecting and Bellini ducts of rat kidney and the loops of-Henle of rat and chicken kidney.  相似文献   

17.
Oxidant and free radical-generating system were used to promote oxidative damage in erythrocytes. Among the oxidants used, phenylhydrazine represents one of the most investigated intracellular free radical-generating probes, which in the presence of haemoglobin autooxidises and give rise to hydroxyl radical, a marker for cellular damage. Erythrocyte, as a single cell, is a good model to be used for studying the haemolytic mechanism of anaemia. Our present investigations reveal increased lipid peroxidation of erythrocyte using phenylhydrazine as well as other oxygen-generating systems (hydrogen peroxide, iron with hydrogen peroxide). It has further been observed that not only lipid peroxidation, phenylhydrazine causes significant elevation in methemoglobin formation, catalase activity and turbidity, in the above system, which are the typical characteristics of haemolytic anaemia. However, exogenous administration of green tea leaf extract and ascorbic acid as natural antioxidants and free radical scavengers were shown to protect separately increased lipid peroxidation caused by phenylhydrazine, though the degree of protection is more in case of green tea leaf extract than ascorbic acid. Results suggest that oxidative damage in vivo due to haemolytic disease may be checked to some extent by using natural antioxidants. (Mol Cell Biochem 276: 205–210, 2005)  相似文献   

18.
19.
The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-κB activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP+EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-l-arginine methyl ester (l-NAME) simultaneously with EPO administration (CLP+EPO+l-NAME). A fifth group (CLP+EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP+EPO rats presented significantly higher inulin clearance than did CLP and CLP+EPO+l-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP+EPO rats; and inulin clearance was significantly higher in CLP+EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP+EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-α activation, NF-κB activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-κB downregulation.  相似文献   

20.
Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号