首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reproduced in vitro the diurnal cycles in levels of serotonin acetyltransferase activity found in the chick pineal gland in vivo. The more closely the lighting conditions of culture matched those under which the birds were raised, the closer was the similarity between cycles in levels of enzyme activity in vitro and in vivo. Repetitive cycles in levels of acetyltransferase activity persisted in culture for at least 4 days under a diurnal cycle of illumination, and at least 2 days in continuous darkness. When glands were explanted into culture in the light phase of a cycle, short periods of further exposure to light markedly stimulated subsequent increase of acetyltransferase in the dark (after a short lag). Prolonged exposure to light in culture markedly inhibited increase of enzyme activity. Cycles in the levels of enzyme activity in glands cultured under altered light cycles were regulated primarily by changes in illumination. However, the endogenous biological 'clock' remained at least partly entrained to the original light cycle. Increase of acetyltransferase activity in vitro was markedly stimulated by theophylline plus compound Ro. 20.1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone) under all lighting conditions. Kinetics (to the time of attaining maximum levels in situ) of the increase under diurnal lighting and in constant darkness were indistinguishable from those in vivo. A high concentration of dl-propranolol markedly stimulated an increase in acetyltransferase activity in glands cultured in constant darkness but had little effect on glands under diurnal lighting or continuous illumination.  相似文献   

2.
本文研究了埃及蟾蜍(Bufo regularis Reuss)从早期幼虫到变态结束,光和暗对视网膜的影响。所观察到的对光和暗反应的变化限于色素上皮和光感受细胞。实验动物分四组:1)在亮处固定的对照(CL);2)在暗处固定的对照(CD);3)连续养在暗处的动物(DD);4)连续受光照的动物(LL)。在CD和DD组动物,黑色素颗粒在色素上皮细胞突起(PEP)中的分布限于光感受细胞顶部间之外周区(巩膜方位)。与此相反。在CL和LL组动物,大量黑色素颗粒则分散在视觉细胞外节段和椭球段间色素上皮细胞突起之向心端位置(玻璃体方位)。在这种动物,上皮细胞色素对光和暗反应发生的光机械运动出现在肢芽期以前。新变态小蟾蜍DD组眼球,与其他三组比较起来,色素上皮层相当厚并含有大的脂肪滴。在较晚期,只有DD组动物的一些杆细胞外节段呈现退化现象。其次,这一组中,由于连续缺少光照的结果,眼球之锥细胞数目有明显减少。四组动物的视网膜上也观察到锥细胞的细胞核位置略有不同。  相似文献   

3.
1. Secretion pattern of Harderian gland of neonatal rats maintained under (a) diurnal lighting conditions; (b) continuous light or (c) continuous darkness was studied at light microscopy level. 2. All animals were placed in especially designed cages at 13:00 hr on day 1 and studied on day 7 at 13:00 and 23:00 hr, respectively. 3. Acini with intraluminal secretion were counted in glands from each animal and the results were separately grouped for male and female animals. 4. A diurnal rhythm in secretion pattern of rat Harderian gland in neonatal period was demonstrated. 5. A statistically significant difference was observed in the gland secretion pattern between males and females at both, 13:00 and 23:00 hr when the animals were kept under diurnal lighting conditions. 6. Under continuous light or continuous darkness, the diurnal rhythm in secretion pattern was lost and no significant differences were seen when data from males were compared to those from female neonates. 7. Results are discussed in terms of the possible function of Harderian gland as element of an extraretinal photoreceptor system involved in the regulation of pineal function in neonatal rats.  相似文献   

4.
The level of hydroxyindole O-methyltransferase (HIOMT) activity in the pienal gland of developing chicks raised under constant illumination rose more rapidly and to higher values than in the gland of birds maintained in constant darkness. Rates of net increase in activity, and levels of activity attained, for birds raised under a diurnal cycle of illumination were intermediate between those maintained in constant light or darkness. Under each of the lighting conditions, the course of increase in enzymic activity was markedly affected by variations in an unidentified factor, the source of which appeared to be the hatching eggs. Birds transferred from constant light to the dark showed either an arrest of increase in enzyme activity or a loss of activity until the levels equalled that observed for chicks of the same age raised in constant darkness. Chicks transferred from constant darkness to constant illumination showed marked increases in levels of enzyme activity at rates comparable with the maximal values observed with birds maintained under constant illumination, regardless of age and without delay. No diurnal cycle in level of HIOMT activity was observed in the pineals of 15-day birds.  相似文献   

5.
Examination was made of the effect of alternating light and darkness (LD 12:12) and constant light (LL) conditions on length of development and fecundity of the moth, Ephestia kuehniella. It was found the conditions applied cause acceleration of larval development on an average by 3 days in comparison with development under constant darkness conditions (DD). The fecundity of the insects examined decreases considerably under the experimental conditions.When pharate adults are kept in light for 18 hr per 24-hr period on the 6th to 7th day of their development, males incapable of fertilizing females are produced.  相似文献   

6.
Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping – i.e., bites inflicted by predators including conspecifics - on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.  相似文献   

7.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683–696, 2001)  相似文献   

8.
1. Conditions experienced during the early stages of development may have carry‐over effects on performance during later life. The egg laying period and embryonic development of temperate and boreal zone amphibians often coincides with peak acidity resulting from spring snow‐melt, but the effects of acid conditions during embryonic stage on subsequent performance are unknown. 2. We investigated the potential carry‐over effects of acidity during the embryonic stage on performance up to metamorphosis in the common frog (Rana temporaria) tadpoles. There were four combinations of acid (4.5) and neutral (7.5) pH treatments applied to the egg and larval stages in a factorial laboratory experiment. In addition, we studied the difference in embryonic and larval tolerance of acidity between two populations originating from circumneutral (pH 6.6) and acidic conditions (pH 4.8). 3. The effects of acid conditions during the embryonic stage were sublethal, as indicated by delayed development and reduced size. Under acid conditions, tadpoles that had been raised in neutral water as embryos at first grew more slowly than tadpoles raised under acid conditions as embryos. At metamorphosis, no effects of embryonic acidity were detectable indicating that tadpoles were able to compensate fully for the initial reduction in growth. 4. Acid conditions during the larval period had a strongly negative effect on survival, size and age at metamorphosis. The amount of food consumed was lower under acid conditions, suggesting that reduced food consumption was at least partly responsible for the negative effects. 5. Although the two populations differed in the length of larval period, there was no indication of a differential response to the treatments in any of the metamorphic traits studied. 6. These results suggest that, although moderate acid conditions during embryonic development affect growth and development negatively, this influence does not persist after conditions have returned to normal. However, even moderately acid conditions during the larval period may have a strong negative influence on survival and performance of the tadpoles.  相似文献   

9.
Wetland hydroperiod is a key factor for the reproductive success of pond-breeding amphibians. Ground-water withdrawals may cause intermittent ponds to dry prematurely, potentially affecting amphibian development. In three intermittent ponds, we monitored hydrology and tracked oviposition, larval development, and metamorphosis for three frog species that represented a range of breeding phenologies. The three species were the southern leopard frog (Lithobates sphenocephalus), spring peeper (Pseudacris crucifer), and Pine Barrens treefrog (Hyla andersonii). We simulated ground-water withdrawals by subtracting from 5 to 50 cm (in 5-cm increments) from the measured water-depth values at the ponds over a short-term (2-year) period and a long-term (10-year) period to estimate the potential impact of hydroperiod alterations on frog development. Short-term simulations indicated that 5 and 10 cm water-depth reductions would have resulted in little or no impact to hydroperiod or larval development and metamorphosis of any of the species. Noticeable impacts were estimated to occur for reductions ≥15 cm. Long-term simulations showed that impacts to the appearance of the first pre-metamorphs and metamorphs would have occurred at reductions ≥10 cm and impacts to initial egg deposition would have occurred at reductions ≥20 cm. For all simulations, successively greater reductions would have caused increasing impacts that varied by species and pond, with the 50-cm reductions shortening hydroperiods enough to practically eliminate the possibility of larval development and metamorphosis for all three species. Compared to the spring peeper and southern leopard frog, the estimated impacts of the simulations on the various life stages were the greatest for the Pine Barrens treefrog.  相似文献   

10.
Plasma FSH and LH levels were examined in female rats reared in the dark at different ages from birth until sexual maturation to investigate whether, and to what extent, external factors such as light, influence gonadotropin levels during development. Control animals were raised in diurnal lighting consisting of 12 hours of light and 12 hours of dark. Light deprivation did not eliminate the characteristic peak of gonadotropins seen in early postnatal development but significantly increased levels of FSH and slightly decreased levels of LH (except for a transient rise at day 12). Constant darkness tended to lower whole body, ovarian and pituitary weights but to increase pineal weight. Whereas the time of eye-opening was the same in control and light-deprived animals, puberty (as judged by vaginal opening and first ovulation) was delayed in animals raised in the dark. The data suggest that environmental light has a mediating action on patterns of gonadotropin release, particularly on FSH, during prepuberal development.  相似文献   

11.
SM Hanlon  JL Kerby  MJ Parris 《PloS one》2012,7(8):e43573
Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus) to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM) at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.  相似文献   

12.
Thomson , Betty F., and Pauline Monz Miller . (Connecticut Coll., New London.) The role of light in histogenesis and differentiation in the shoot of Pisum sativum, II. The leaf. Amer. Jour. Bot. 49(4): 383–387. Illus. 1962.—Development of the form and anatomy of leaves was studied in plants of Pisum sativum grown in vermiculite under constant conditions and exposed daily to red or white light or kept in continuous darkness. The red light used had an intensity in the morphogenetically active red region of the spectrum of 70–75% that of the white light. Light had no effect on the manner of initiation or early development of leaf primordia. Quantitative data from older leaves showed that light has no effect on the pattern of later development but does affect the rate and extent of development. Under all light conditions, the length of the leaflet is closely correlated with the state of its internal anatomy. “Mature” etiolated leaves duplicate young stages of light-grown leaves. Mature leaves grown in red light duplicate not-quite-mature leaves grown in white light. The difference between white-light and red-light leaves is attributed here to light intensity and resembles that between sun and shade leaves.  相似文献   

13.
It is often proposed that the morphometric shape of animals often evolves as a correlated response to selection on life-history traits such as whole-body growth and differentiation rates. However, there exists little empirical information on whether selection on rates of growth or differentiation in animals could generate correlated response in morphometric shape beyond that owing to the correlation between these rates and body size. In this study genetic correlations were estimated among growth rate, differentiation rate, and body-size-adjusted head width in the green tree frog, Hyla cinerea. Head width was adjusted for size by using the residuals from log-log regressions of head width on snout-vent length. Size-adjusted head width at metamorphosis was positively genetically correlated with larval period length. Thus, size-independent shape might evolve as a correlated response to selection on a larval life-history trait. Larval growth rate was not significantly genetically correlated with size-adjusted head width. An additional morphometric trait, size-adjusted tibiofibula length, had a nonnormal distribution of breeding values, and so was not included in the analysis of genetic correlations (offspring from one sire had unusually short legs). This result is interesting because, although using genetic covariance matrices to predict long-term multivariate response to selection depends on the assumption that all loci follow a multivariate Gaussian distribution of allelic effects, few data are available on the distribution of breeding values for traits in wild populations. Size at metamorphosis was positively genetically correlated with larval period and larval growth rate. Quickly growing larvae that delay metamorphosis therefore emerge at a large size. The genetic correlation between larval growth rate and juvenile (postmetamorphic) growth rate was near zero. Growth rate may therefore be an example of a fitness-related trait that is free to evolve in one stage of a complex life cycle without pleiotropic constraints on the same trait expressed in the other stage.  相似文献   

14.
In Carapus homei, reef colonisation is associated with a penetration inside a sea cucumber followed by heavy transformations during which the length of the fish is reduced by 60%. By comparing vertebral axis to otolith ontogenetic changes, this study aimed (i) to specify the events linked to metamorphosis, and (ii) to establish to what extent these fish have the ability to delay it. Different larvae of C. homei were caught when settling on the reef and kept in different experimental conditions for at least 7 days and up to 21 days: darkness or natural light conditions, presence of sea cucumber or not, and food deprivation or not. Whatever the nutritional condition, a period of darkness seems sufficient to initiate metamorphosis. Twenty-one days in natural light conditions delayed metamorphosis, whereas the whole metamorphosis process is the fastest (15 days) for larvae living in sea cucumbers. Whether the metamorphosis was initiated or not, otoliths were modified with the formation of a transition zone, whose structure varied depending on the experimental conditions. At day 21, larvae maintained in darkness had an otolith transition zone with more increments (around 80), albeit wider than those (more or less 21) of individuals kept under natural lighting. These differences in otolith growth could indicate an increased incorporation rate of released metabolites by metamorphosing larvae. However, the presence of a transition zone in delayed-metamorphosis larvae suggests that these otolith changes record the endogenously-induced onset of metamorphosis, whereas body transformations seem to be modulated by the environmental conditions of settlement.  相似文献   

15.
Light plays a key role in the development of biological rhythms in fish. Recent research in Senegal sole has revealed that spawning and hatching rhythms, larval development, and growth performance are strongly influenced by lighting conditions. However, the effect of light on the daily patterns of behavior remains unexplored. Therefore, the aim of this study was to investigate the impact of different photoperiod regimes and white, blue, and red light on the activity rhythms and foraging behavior of Solea senegalensis larvae up to 40 days posthatching (DPH). To this end, eggs were collected immediately after spawning during the night and exposed to continuous white light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white (LD(W)), blue (LD(B), λ(peak) = 463 nm), or red light (LD(R), λ(peak) = 685 nm). A filming scenario was designed to video record activity rhythms during day and night times using infrared lights. The results revealed that activity rhythms in LD(B) and LD(W) changed from diurnal to nocturnal on days 9 to 10 DPH, coinciding with the onset of metamorphosis. In LD(R), sole larvae remained nocturnal throughout the experimental period, while under LL and DD, larvae failed to show any rhythm. In addition, larvae exposed to LD(B) and LD(W) had the highest prey capture success rate (LD(B) = 82.6% ± 2.0%; LD(W) = 75.1% ± 1.3%) and attack rate (LD(B) = 54.3% ± 1.9%; LD(W) = 46.9% ± 3.0%) during the light phase (ML) until 9 DPH. During metamorphosis, the attack and capture success rates in these light conditions were higher during the dark phase (MD), when they showed the same nocturnal behavioral pattern as under LD(R) conditions. These results revealed that the development of sole larvae is tightly controlled by light characteristics, underlining the importance of the natural underwater photoenvironment (LD cycles of blue wavelengths) for the normal onset of the rhythmic behavior of fish larvae during early ontogenesis.  相似文献   

16.
1. The effects of raising cockroaches, Leucophaea maderae, in non-24 h light cycles on circadian rhythms in adults were examined. The average period (tau) of freerunning rhythms of locomotor activity of animals exposed to LD 11:11 (T22) during post-embryonic development was significantly shorter (tau = 22.8 +/- 0.47 SD, n = 85) than that of animals raised in LD 12:12 (T24) (tau = 23.7 +/- 0.20 h, n = 142), while animals raised in LD 13:13 (T26) had significantly longer periods (tau = 24.3 +/- 0.21 h, n = 65). Animals raised in constant darkness (DD) had a significantly shorter period (tau = 23.5 +/- 0.21 h, n = 13) than siblings raised in constant light (LL) (tau = 24.0 +/- 0.15 h, n = 10). 2. The differences in tau between animals raised in T22 and T24 were found to be stable in DD for at least 7 months and could not be reversed by exposing animals to LD 12:12 or LD 6:18. 3. Animals raised in either T24 or DD and then exposed as adults to T22 exhibited average freerunning periods that were not different from animals not exposed to T22. 4. Measurement of freerunning periods at different temperatures of animals raised in T22, T24, or T26 showed that the temperature compensation of tau was not affected by the developmental light cycle. These results indicate that the lighting conditions during post-embryonic development can permanently alter the freerunning period of the circadian system in the cockroach, but do not affect its temperature compensation.  相似文献   

17.
While developmental plasticity can facilitate evolutionary diversification of organisms,the effects of water levels as an environmental pressure on tiger frogs remains unclear.This study clarifies the relationship by studying the responses of tiger frog(Hoplobatrachus chinensis)tadpoles to simulated hydroperiods(i.e.,constant low water levels,constant high water levels,increasing water levels,decreasing water levels,rapid changes in water levels and gradual fluctuations in water levels)in a laboratory setting.ANOVA analysis showed that none of the water level treatments had any significant effect on the total length,body mass,or developmental stages of H.chinensis tadpoles half way through development(11 days old).Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis,whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis.None of the water level treatments had a significant effect on the snout-vent length(SVL)or body mass of H.chinensis tadpoles at Gosner stage 42,or on the body mass of tadpoles at Gosner stage 45.However,the tadpoles raised in high levels and rapidly fluctuating water levels,significantly larger SVL at Gosner stage 45,while ones under gradually fluctuating water levels had smaller SVL than the other groups.Time to metamorphosis was positively correlated with body size(SVL)at metamorphosis in H.chinensis tadpoles.H.chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments(G-test).Moreover,ANOVA and ACNOVA(with body length as the covariate)indicated that water levels had no significant effect on either the morphology(i.e.head length,head width,forelimb length,hindlimb length and body width)or the jumping ability of juvenile H.chinensis.These results suggest that the observed accelerated metamorphosis and high mortality of H.chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interactions among increasing conspecifics.  相似文献   

18.
《Chronobiology international》2013,30(6):1263-1271
Several studies suggest that the circadian systems of diurnal mammals respond differently to daytime light than those of nocturnal mammals. We hypothesized that the photosensitive “clock” gene Per1 would respond to light exposure during subjective day in the suprachiasmatic nucleus of the diurnal rodent, Octodon degus. Tissue was collected 1.5–2?h after a 30?min light pulse presented at five timepoints across the 24?h day and compared to controls maintained under conditions of constant darkness. Per1 mRNA was quantified using in situ hybridization. Results showed that the rhythmicity and photic responsiveness of Per1 in the degu resembles that of nocturnal animals. (Author correspondence: )  相似文献   

19.
Cyclotella meneghiniana grew heterotrophically in darkness when glucose in concentrations from 5 mg/liter to 10 g/liter was provided. The other compounds tested did not support growth. However, in continuous light (300 ft-c) growth wax not enhanced if glucose wax provided. Under diurnal conditions of light (300 ft-c) approximately 12–14 hr of darkness were required to observe the enhancement effects of glucose. Uptake studies with labeled glucose indicated that uptake is not dependent on glucose, but that it occurs only at low light intensities. Cells required 12–14 hr of darkness to develop the uptake system.  相似文献   

20.
Early light experience influences the brain during development. Perinatal light exposure has an important effect on the development of the circadian system, although the role of quantity versus quality of light in this process is still unclear. We tested the development of the circadian rhythm of locomotor activity under constant bright light from the day of weaning, of six groups of rats raised under different light conditions during suckling. Results indicated that when rats received daily darkness during suckling (rats reared under constant darkness or light-dark cycles with dim or bright light) became arrhythmic when exposed to continuous bright light after weaning. However, those rats reared in the absence of darkness (constant dim or bright light, or alternating dim and bright light) developed a circadian rhythm, which was stronger and had a shorter period depending on the quantity of light received during suckling. Vasointestinal polypeptide immunoreactivity in the suprachiasmatic nucleus (SCN) was higher in those rats with weaker rhythms. However, no apparent differences among these groups were found in the melanopsin-expressing retinal ganglion cells, which provide the SCN with light input in the photoentrainment process. When bright light was shifted to dim light in three of the groups on day 57 after weaning, all of them generated a circadian rhythm with a longer period in those rats previously arrhythmic. Our results indicate the importance of the amount of light received at the early stages of life in the development of the circadian system and suggest that darkness is needed for the normal development of circadian behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号