首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Obstetric selection acts on the female pelvic canal to accommodate the human neonate and contributes to pelvic sexual dimorphism. There is a complex relationship between selection for obstetric sufficiency and for overall body size in humans. The relationship between selective pressures may differ among populations of different body sizes and proportions, as pelvic canal dimensions vary among populations. Size and shape of the pelvic canal in relation to body size and shape were examined using nine skeletal samples (total female n = 57; male n = 84) from diverse geographical regions. Pelvic, vertebral, and lower limb bone measurements were collected. Principal component analyses demonstrate pelvic canal size and shape differences among the samples. Male multivariate variance in pelvic shape is greater than female variance for North and South Africans. High‐latitude samples have larger and broader bodies, and pelvic canals of larger size and, among females, relatively broader medio‐lateral dimensions relative to low‐latitude samples, which tend to display relatively expanded inlet antero‐posterior (A‐P) and posterior canal dimensions. Differences in canal shape exist among samples that are not associated with latitude or body size, suggesting independence of some canal shape characteristics from body size and shape. The South Africans are distinctive with very narrow bodies and small pelvic inlets relative to an elongated lower canal in A‐P and posterior lengths. Variation in pelvic canal geometry among populations is consistent with a high degree of evolvability in the human pelvis. Am J Phys Anthropol 151:88–101, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Sexual dimorphism in the human pelvis has been studied widely for forensic purposes, but it is still unclear to what extent it varies among human populations. There is evidence that microevolutionary processes, both neutral (i.e., population history) and selective (e.g., thermoregulatory adaptation and size‐related obstetrical constraints) contribute to explain pelvic variation among populations, but the extent to which these factors affect pelvic sexual dimorphism is unknown. In this study, I analyze sexual dimorphism of the os coxae in 20 globally distributed human populations, using 3D morphometric data to separate the size and shape components of sexual differences. After evaluating population differences in the degree and pattern of sexual dimorphism, I test for the effect of population history, climate, and body size in shaping global diversity. The results show that size and shape dimorphism follow different patterns. Coxal size dimorphism is generally quite consistent through populations, with males bigger than females, but it appears to be reduced in small‐bodied populations, possibly in relation to obstetrically‐related selective pressures for a spacious birth canal. Beyond a general species‐wide pattern of shape dimorphism, commonly used for forensic sex determination, other aspects of sexual differences in coxal shape vary among human populations, reflecting the effects of neutral demographic processes and climatic adaptation. Am J Phys Anthropol 153:167–177, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Schultz ([1949] Am. J. Phys. Anthropol. 7:401-424) presented a conundrum: among primates, sexual dimorphism of the pelvis is a developmental adjunct to dimorphism in other aspects of the body, albeit in the converse direction. Among species in which males are larger than females in body size, females are larger than males in some pelvic dimensions; species with little sexual dimorphism in nonpelvic size show little pelvic dimorphism. Obstetrical difficulty does not explain this relationship. The present study addresses this issue, evaluating the relationship between pelvic and femoral sexual dimorphism in 12 anthropoid species. The hypothesis is that species in which males are significantly larger than females in femoral size will have a higher incidence, magnitude, and variability of pelvic sexual dimorphism, with females having relatively larger pelves than males, compared with species monomorphic in femoral size. The results are consistent with the hypothesis. The proposed explanation is that the default pelvic anatomy in adulthood is that of the female; testosterone redirects growth from the default type to that of the male by differentially enhancing and repressing growth among the pelvic dimensions. Testosterone also influences sexual dimorphism of the femur. The magnitude of the pelvic response to testosterone is greater in species that are sexually dimorphic in the femur than in those that are monomorphic.  相似文献   

4.
Five measurements were taken on the ossa coxae of 454 adult primates representing Ceboidea, Cercopithecoidea and Hominoidea. Sex differences in these variables and their relationships to overall body size and sexual dimorphism were tested by means of Student's t-test and regression analysis. The study attempts to clarify the nature of primate pelvic sexual dimorphism, including allometric effects, and more specifically, test the assertion made by Mobb and Wood (1977) that sexual dimorphism in body size in not an important determinant in pelvic sex differences. Variables that contribute to the size of the birth canal tend to be larger in females than males in all taxa studied except two. In these, Hylobates and Alouatta, there were no significant differences between the sexes for any of the five variables. In general, sexual dimorphism in variables contributing to the size of the birth canal was correlated (r ? 0.8) with sexual dimorphism in body size. Furthermore, the coefficients of allometry underlying pelvic sex differences were shown to be moderately correlated (r ? 0.5) with sexual dimorphism in size. The influence of other adaptive factors on primate pelvic sexual dimorphism are also briefly discussed.  相似文献   

5.
Sexual dimorphism in the pelves of African lorises   总被引:1,自引:0,他引:1  
The present study is the first describing sexual dimorphism in the pelves of prosimian primates. Various measurements and indices indicate that there is no significant sexual dimorphism in the pelves of African lorises (Perodicticus potto and Arctocebus calabarensis). The lack of even a moderate degree of sexual dimorphism can be interpreted as the result of a lack of marked sexual differences in body size and of absence of selective pressure for expansion of the birth canal, the latter due to the small size of the fetus at term in relation to the dimensions of the female pelvic inlet.  相似文献   

6.
The mammalian pelvis is sexually dimorphic with respect to both size and shape. Yet little is known about the differences in postnatal growth and bone remodeling that generate adult sexual dimorphism in pelvic bones. We used Sprague-Dawley laboratory rats (Rattus norvegicus), a species that exhibits gross pelvic size and shape dimorphism, as a model to quantify pelvic morphology throughout ontogeny. We employed landmark-based geometric morphometrics methodology on digitized landmarks from radiographs to test for sexual dimorphism in size and shape, and to examine differences in the rates, magnitudes, and directional patterns of shape change during growth. On the basis of statistical significance testing, the sexes became different with respect to pelvic shape by 36 days of age, earlier than the onset of size dimorphism (45 days), although visible shape differences were observed as early as at 22 days. Males achieved larger pelvic sizes by growing faster throughout ontogeny. However, the rates of shape change in the pelvis were greater in females for nearly all time intervals scrutinized. We found that trajectories of shape change were parallel in the two sexes until age of 45 days, suggesting that both sexes underwent similar bone remodeling until puberty. After 45 days, but before reproductive maturity, shape change trajectories diverged because of specific changes in the female pelvic shape, possibly due to the influence of estrogens. Pattern of male pelvic bone remodeling remained the same throughout ontogeny, suggesting that androgen effects on male pelvic morphology were constant and did not contribute to specific shape changes at puberty. These results could be used to direct additional research on the mechanisms that generate skeletal dimorphisms at different levels of biological organization.  相似文献   

7.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

8.
Sexual size dimorphism might be influenced by environmental constraints on sexual selection or by intraspecific competition between males and females. We studied bobcats (Lynx rufus) in collections of museum specimens from western North America to examine these hypotheses. Structural body size was estimated from several measurements of the skull, ln-transformed and indexed through principal components analysis. Sexual dimorphism in body size was estimated from the difference in size index of males and females, and compared to geographic and climatic variables associated with biotic provinces (ecoregions). Of several climatic variables that were associated with bobcat body size, only seasonality of climate was associated with sexual dimorphism. Sexual size dimorphism, longitude, elevation, and seasonality were intercorrelated. As longitude decreased (moving inland from west-coastal ecoregions), sexual dimorphism decreased with the increased elevation and seasonality of continental climates of the Rocky Mountains. We suggest that increased seasonality and the need for fasting endurance by females may place constraints on the degree of sexual dimorphism in bobcats. Sexual dimorphism of body size and sexual size dimorphism of trophic structures (teeth) exhibited a strong positive association over geography, thus indirectly supporting the hypothesis that intrasexual competition for prey could account for the geographic variation in sexual size dimorphism. Thus, both environmental constraints on sexual selection of body size and intersexual competition were supported as possible explanations of the degree of sexual size dimorphism that occurs in populations of bobcats.  相似文献   

9.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

10.
This study examines the relationship between public symphyseal synostosis and sexual dimorphism of the pelvis in two sympatric species ofPresbytis—P. cristata andP. rubicunda. Whereas no specimen ofP. cristata shows fusion of the interpubic joint, a high percentage of female (43.8%) and male (83.3%)P. rubicunda have a fused public symphysis. As females of both species are similar in body size, they are predicted to give birth to similarly sized newborns. Based on comparison with other anthropoids, the percentage dimorphism in the ischiopubic index inP. cristata andP. rubicuda suggests selection on pelvic capacity in relation to obstetrics. In species characterized by cephalopelvic constriction (i.e., the size of the fetal cranium closely approximates the capacity of the maternal birth canal), successful birth seems possible only by a hormonally induced increase in pelvic joint mobility during delivery. However, fusion of the interpubic joint obviates pelvic joint mobility. Consequently, this study tests the hypothesis thatP. rubicunda shows obstetric adaptations of the pelvis that are not found inP. cristata. The results show that pelvic capacity is larger in females than males in bothP. cristata andP. rubicunda; the sexual difference is most pronounced at the inlet. Moreover, the pattern of pelvic dimorphism is nearly identical between the species. When females of the two species are compared,P. rubicunda evidences a shorter distance between the sacroiliac and hip joints and a wider bituberous diameter. The former is related to interspecific differences in locomotion, and the latter is associated with obstetrics.  相似文献   

11.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   

12.
Variation in body size represents one of the crucial raw materials for evolution. However, at present, it is still being debated what is the main factor affecting body size or if the final body size is the consequence of several factors acting synergistically. To evaluate this, widespread species seem to be suitable models because the different populations occur along a geographical gradient and under contrasted climatic and environmental conditions. Here we describe the spatial pattern of variation in body size and sexual size dimorphism in the snouted treefrog Scinax fuscovarius (Anura, Hylidae) along a 10° range in latitude, 25° longitude, and 2000 m in altitude from Argentina, Brazil and Paraguay using an information‐theoretic approach to evaluate the support of the data for eight a priori hypotheses proposed in the literature to account for geographical body size, and three hypotheses for sexual size dimorphism variation. Body size of S. fuscovarius varied most dramatically with longitude and less so with latitude; frogs were largest in the northwestern populations. Body size was positively related with precipitation seasonality, and negatively with annual precipitation. Furthermore, the degree of sexual size dimorphism was greatest in the western populations with less annual precipitation, as the increase in body size was stronger for females. Our results on body size variation are consistent with two ecogeographical hypotheses, the starvation resistance and the water availability hypotheses, while our results on sexual size dimorphism in S. fuscovarius supports the differential‐plasticity hypothesis but the inverse to Rensch's rule and the parental investment hypothesis. Due to the weak association between environmental variables and body size and sexual size dimorphism variation, we stress that there are other factors, mainly those related to the life history, driving the geographical variation of S. fuscovarius.  相似文献   

13.
Pelvic sexual dimorphism occurs in many anthropoid species and is often attributed to obstetric selection on female pelvic morphology. Few studies of pelvic dimorphism have included strepsirrhine taxa, which typically have relatively smaller infants than those of anthropoids. Because smaller female primates give birth to relatively larger infants, it is possible that the pelves of Microcebus, the smallest extant primate genus, will show some evidence of selection on obstetric adequacy. A comparison of adult female and neonatal body masses indicates that individual neonatal Microcebus are relatively large compared to adult female body mass, even though members of the taxon frequently produce twins. I examined variation in the bony pelvis within a sample of Microcebus. I measured specimens from a single locality, which probably represent 1 population. I measured 8 pelvic and 3 femoral variables to investigate skeletal size and pelvic size and shape dimorphism. Females significantly exceed males in absolute values of sacral width, pelvic height, pubic length, and distances from the pubic symphysis to the ischial tuberosity and points on the sacrum. Measurements of the femur are not significantly greater in females, suggesting that the pelvic differences are not due to skeletal size dimorphism. Significant pelvic shape or ratio differences, calculated via the geometric mean of 5 variables as the denominator, included greater relative pubic length and sacral width in females. Hence selection for obstetric adequacy may occur in the extremely small-bodied Microcebus.  相似文献   

14.
Patterns of sexual size dimorphism (SSD) and cranial dimorphism are well documented. However, limited examinations exist of the contrasts in the patterns and nature of dimorphism across body regions (e.g. cranium, pelvis), particularly when these regions have different sex-specific functions (e.g. display in mating, locomotion, and reproduction). Using landmark-based morphometric techniques, we investigated size and shape dimorphism variation in the crania and pelves of two closely-related fox species within the genus Urocyon . Although we found no significant size and shape dimorphism in the crania of either species, we did find significant dimorphism in the pelvis: its size was dimorphic in Urocyon littoralis (but not in Urocyon cinereoargenteus ) and its shape was dimorphic in both species (though more pronounced in U. littoralis ). The observation of greater dimorphism in the pelvis than in the cranium suggests that factors such as offspring size and locomotor mode play a greater role in sexual dimorphism than simple 'whole body' allometric affects associated with dimorphism in body size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 339–353.  相似文献   

15.
Studies have shown that after controlling for the effects of body size on brain size, the brains of adult humans, rhesus monkeys, and chimpanzees differ in relative size, where males have a greater volume of cerebral tissue than females. We assess whether head circumference sexual dimorphism is present during early development by evaluating sex differences in relative head circumference in living fetuses and infants within the first year of life. Head circumference is used as a proxy for brain size in the fetus and infant. Femur length is used as a proxy for body length in the fetus. Ultrasonography was used to obtain fetal measures, and anthropometry was used to obtain postnatal measures in humans, rhesus monkeys, baboons, and common marmosets. We show that statistically significant but low levels of head circumference sexual dimorphism are present in humans, rhesus monkeys, and baboons in early life. On average, males have head circumferences about 2% larger than females of comparable femur/body length in humans, rhesus monkeys, and baboons. No evidence for head circumference sexual dimorphism in the common marmoset was found. Dimorphism was present across all body size ranges. We suggest that head circumference sexual dimorphism emerges largely postnatally and increases throughout maturation, particularly in humans who reach adult dimorphism values greater than the monkeys. We suggest that brain dimorphism is not likely to impose an additional energetic burden to the gestating or lactating mother. Finally, some of the problems with ascribing functional significance to brain size sexual dimorphism are discussed, and the energetic implications for brain size sexual dimorphism in infancy are assessed.  相似文献   

16.
S.-H. Lee   《HOMO》2005,56(3):219-232
Size sexual dimorphism is one of the major components of morphological variation and has been associated with socioecology and behavioral variables such as mating patterns. Although several studies have addressed the magnitude and pattern of sexual dimorphism in Australopithecus afarensis, one of the earliest hominids, consensus has yet to be reached. This paper uses assigned resampling method, a data resampling method to estimate the magnitude of sexual dimorphism without relying on individual sex assessments, to examine the fossil hominid sample from Hadar. Two questions are asked: first, whether sexual dimorphism in a selected sample of skeletal elements of A. afarensis is the same as that in living humans, chimpanzees, or gorillas; and second, whether different skeletal elements reflect variation in sexual dimorphism in the same way. All possible metric variables were used as data in applying the method, including seven variables from three elements (mandibular canine, humerus, femur). Analyses show that A. afarensis is similar in size sexual dimorphism to gorillas in femoral variables, to humans in humeral variables, and to chimpanzees in canine variables. The results of this study are compatible with the hypothesis that the pattern of sexual dimorphism in A. afarensis is different from any that are observed in living humans or apes.  相似文献   

17.
Body size of many animals varies with latitude: body size is either larger at higher latitudes (Bergmann's rule) or smaller at higher latitudes (converse Bergmann's rule). However, the causes underlying these patterns are poorly understood. Also, studies rarely explore how sexual size dimorphism varies with latitude. Here we investigate geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Stator limbatus, collected from 95 locations along a 38 degrees range in latitude. We examine 14 variables to test whether clines in environmental factors are adequate to explain geographic patterns of body size. We found that body size and sexual size dimorphism of S. limbatus varied considerably with latitude; beetles were smaller but more dimorphic at lower latitudes. Body size was not correlated with a gradient in mean temperature, contrary to the commonly accepted hypothesis that clines are produced by latitudinal gradients in temperature. Instead, we found that three factors were adequate to explain the cline in body size: clinal variation in host plant seed size, moisture (humidity), and seasonality (variance in humidity, precipitation, and temperature). We also found that the cline in sexual size dimorphism was partially explainable by a gradient in moisture, though moisture alone was not sufficient to explain the cline. Other ecological or environmental variables must necessarily contribute to differences in selection on male versus female body size. The main implications of our study are that the sexes differ in the magnitude of clinal variation in body size, creating latitudinal variation in sexual size dimorphism, and that clines in body size of seed beetles are likely influenced by variation in host seed size, water availability, and seasonality.  相似文献   

18.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

19.
A sexual dimorphism more marked than in living humans has been claimed for European Middle Pleistocene humans, Neandertals and prehistoric modern humans. In this paper, body size and cranial capacity variation are studied in the Sima de los Huesos Middle Pleistocene sample. This is the largest sample of non-modern humans found to date from one single site, and with all skeletal elements represented. Since the techniques available to estimate the degree of sexual dimorphism in small palaeontological samples are all unsatisfactory, we have used the bootstraping method to asses the magnitude of the variation in the Sima de los Huesos sample compared to modern human intrapopulational variation. We analyze size variation without attempting to sex the specimens a priori. Anatomical regions investigated are scapular glenoid fossa; acetabulum; humeral proximal and distal epiphyses; ulnar proximal epiphysis; radial neck; proximal femur; humeral, femoral, ulnar and tibial shaft; lumbosacral joint; patella; calcaneum; and talar trochlea. In the Sima de los Huesos sample only the humeral midshaft perimeter shows an unusual high variation (only when it is expressed by the maximum ratio, not by the coefficient of variation). In spite of that the cranial capacity range at Sima de los Huesos almost spans the rest of the European and African Middle Pleistocene range. The maximum ratio is in the central part of the distribution of modern human samples. Thus, the hypothesis of a greater sexual dimorphism in Middle Pleistocene populations than in modern populations is not supported by either cranial or postcranial evidence from Sima de los Huesos. Am J Phys Anthropol 106:19–33, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号