首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two distinct patterns of neutralization were identified by comparing the neutralization curves of monoclonal antibodies (MAbs) directed at the two surface proteins, VP4 and VP7, of rhesus rotavirus. VP7-specific MAbs were able to neutralize virus efficiently, and slight increases in antibody concentration resulted in a sharp decline in infectivity. On the other hand, MAbs to VP4 proved much less efficient at neutralizing rhesus rotavirus, and the fraction of infectious virus decreased gradually throughout a wide range of antibody concentrations. MAbs directed at VP8*, the smaller trypsin cleavage fragment of VP4, were shown to efficiently prevent binding of radiolabeled virions to MA104 cell monolayers, to an extent and at concentrations comparable to those required for neutralization of infectivity. Conversely, MAbs recognizing VP7 or the larger VP4 trypsin cleavage product, VP5*, showed little or no inhibitory effect on virus binding to cells. All MAbs studied were able to neutralize rotavirus that was already bound to the surface of cells. The MAbs directed at VP8*, but not those recognizing VP5* or VP7, were shown to mediate release of radiolabeled virus from the surface of the cells. With MAbs directed at VP7, papain digestion of virus-bound antibody molecules led to an almost complete recovery of infectivity. Neutralization could be fully restored by incubation of virus-Fab complexes with anti-mouse immunoglobulin G antiserum. Neutralization with MAbs directed at VP8* proved insensitive to digestion with papain as well as to the addition of anti-immunoglobulin antibodies.  相似文献   

2.
An immunochemical analysis of the hemagglutinin (VP4) of the simian rotavirus SA11 was performed to better understand the structure and function of this molecule. Following immunization of mice with double-shelled virus particles and VP4-enriched fractions from CsCl gradients, a battery of anti-SA11 hybridomas was generated. A total of 13 clones secreting high levels of anti-VP4 monoclonal antibody (MAb) was characterized and compared with two cross-reactive anti-VP4 MAbs generated against heterologous rhesus (RRV) and porcine (OSU) rotavirus strains. These cross-reactive MAbs effectively neutralized SA11 infectivity in vitro. The epitopes recognized by these 15 MAbs were grouped into six antigenic sites on the SA11 hemagglutinin. These sites were identified following analysis of the MAbs by using a simple competitive binding enzyme-linked immunosorbent assay (ELISA) and biological assays. Three of the antigenic sites were involved in neutralization of virus infectivity in vitro. All the MAbs with neutralization activity and two nonneutralizing MAbs were able to inhibit viral hemagglutination of human erythrocytes. Competitive binding ELISA data showed a positive cooperative binding effect with some pairs of the anti-VP4 MAbs, apparently due to a conformational change induced by the binding of the first MAb. Some of the MAbs also bound better to trypsin-treated virus than to non-trypsin-treated virus. A topographic map for VP4 is proposed on the basis of the observed properties of each antigenic site.  相似文献   

3.
4.
We previously characterized three neutralization-positive epitopes (NP1 [1a and 1b], NP2, and NP3) and three neutralization-negative epitopes on the simian rotavirus SA11 VP4 with 13 monoclonal antibodies (MAbs). Conformational changes occurred as a result of the binding of NP1 MAbs to the SA11 spike VP4, and enhanced binding of all neutralization-negative MAbs was observed when NP1 MAbs bound VP4 in a competitive MAb capture enzyme-linked immunosorbent assay. To further understand the structure and function of VP4, we have continued studies with these MAbs. Electron microscopic and sucrose gradient analyses of SA11-MAb complexes showed that triple-layered viral particles disassembled following treatment with NP1b MAbs 10G6 and 7G6 but not following treatment with NP1a MAb 9F6, NP2 MAb 2G4, and NP3 MAb 23. Virus infectivity was reduced approximately 3 to 5 logs by the NP1b MAbs. These results suggest that NP1b MAb neutralization occurs by a novel mechanism. We selected four neutralization escape mutants of SA11 with these VP4 MAbs and characterized them by using plaque reduction neutralization assays, hemagglutination inhibition assays, and an antigen capture enzyme-linked immunosorbent assay. These analyses support the previous assignment of the NP1a, NP1b, NP2, and NP3 MAbs into separate epitopes and confirmed that the viruses were truly neutralization escape mutants. Nucleotide sequence analyses found 1 amino acid (aa) substitution in VP8* of VP4 at (i) aa 136 for NP1a MAb mutant 9F6R, (ii) aa 180 and 183 for NP1b MAb mutants 7G6R and 10G6R, respectively, and (iii) aa 194 for NP3 MAb mutant 23R. The NP1b MAb mutants showed an unexpected enhanced binding with heterologous nonneutralization MAb to VP7 compared with parental SA11 and the other mutants. Taken together, these results suggest that the NP1b epitope is a critical site for VP4 and VP7 interactions and for virus stability.  相似文献   

5.
Immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed at the conserved inner core protein VP6 of rotavirus, such as the IgA7D9 MAb, provide protective immunity in adult and suckling mice when delivered systemically. While these antibodies do not have traditional in vitro neutralizing activity, they could mediate their antiviral activity either by interfering with the viral replication cycle along the IgA secretory pathway or by acting at mucosal surfaces as secretory IgA and excluding virus from target enterocytes. We sought to determine the critical step at which antirotaviral activity was initiated by the IgA7D9 MAb. The IgA7D9 MAb appeared to directly interact with purified triple-layer viral particles, as shown by immunoprecipitation and immunoblotting. However, protection was not conferred by passively feeding mice with the secretory IgA7D9 MAb. This indicates that the secretory IgA7D9 MAb does not confer protection by supplying immune exclusion activity in vivo. We next evaluated the capacity of polymeric IgA7D9 MAb to neutralize rotavirus intracellularly during transcytosis. We found that when polymeric IgA7D9 MAb was applied to the basolateral pole of polarized Caco-2 intestinal cells, it significantly reduced viral replication and prevented the loss of barrier function induced by apical exposure of the cell monolayer to rotavirus, supporting the conclusion that the antibody carries out its antiviral activity intracellularly. These findings identify a mechanism whereby the well-conserved immunodominant VP6 protein can function as a target for heterotypic antibodies and protective immunity.  相似文献   

6.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

7.
Astroviruses are important agents of pediatric gastroenteritis. To better understand astrovirus antigenic structure and the basis of protective immunity, monoclonal antibodies (MAbs) were produced against serotype 1 human astrovirus. Four MAbs were generated. One MAb (8G4) was nonneutralizing but reacted to all seven serotypes of astrovirus by enzyme-linked immunosorbentassay (ELISA) and immunoperoxidase staining of infected cells. Three MAbs were found to have potent neutralizing activity against astrovirus. The first (5B7) was serotype 1 specific, another (7C2) neutralized all seven human astrovirus serotypes, while the third (3B2) neutralized serotypes 1 and 7. Immunoprecipitation of radiolabeled astrovirus proteins from supernatants of astrovirus-infected cells showed that all three neutralizing antibodies reacted with VP29. MAb 5B7 also reacted strongly with VP26. A competition ELISA showed that all three neutralizing antibodies competed with each other for binding to purified astrovirus virions, suggesting that their epitopes were topographically in close proximity. None of the neutralizing MAbs competed with nonneutralizing MAb 8G4. The neutralizing MAbs were used to select antigenic variant astroviruses, which were then studied in neutralization assays. These assays also suggested a close relationship between the respective epitopes. All three neutralizing MAbs were able to prevent attachment of radiolabeled astrovirus particles to human Caco 2 intestinal cell monolayers. Taken together, these data suggest that the astrovirus capsid protein VP29 may be important in viral neutralization, heterotypic immunity, and virus attachment to target cells.  相似文献   

8.
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma “backpack tumor” model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.  相似文献   

9.
Rotavirus (RV) cell entry is an incompletely understood process, involving VP4 and VP7, the viral proteins composing the outermost layer of the nonenveloped RV triple-layered icosahedral particle (TLP), encasing VP6. VP4 can exist in three conformational states: soluble, cleaved spike, and folded back. In order to better understand the events leading to RV entry, we established a detection system to image input virus by monitoring the rhesus RV (RRV) antigens VP4, VP6, and VP7 at very early times postinfection. We provide evidence that decapsidation occurs directly after cell membrane penetration. We also demonstrate that several VP4 and VP7 conformational changes take place during entry. In particular, we detected, for the first time, the generation of folded-back VP5 in the context of the initiation of infection. Folded-back VP5 appears to be limited to the entry step. We furthermore demonstrate that RRV enters the cell cytoplasm through an endocytosis pathway. The endocytosis hypothesis is supported by the colocalization of RRV antigens with the early endosome markers Rab4 and Rab5. Finally, we provide evidence that the entry process is likely dependent on the endocytic Ca(2+) concentration, as bafilomycin A1 treatment as well as an augmentation of the extracellular calcium reservoir using CaEGTA, which both lead to an elevated intraendosomal calcium concentration, resulted in the accumulation of intact virions in the actin network. Together, these findings suggest that internalization, decapsidation, and cell membrane penetration involve endocytosis, calcium-dependent uncoating, and VP4 conformational changes, including a fold-back.  相似文献   

10.
Group A rotavirus is one of the most common causes of severe diarrhea in human infants and newborn animals. Rotavirus virions are triple-layered particles. The outer capsid proteins VP4 and VP7 are highly variable and represent the major neutralizing antigens. The inner capsid protein VP6 is conserved among group A rotaviruses, is highly immunogenic, and is the target antigen of most immunodiagnosis tests. Llama-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity and can therefore be expected to have properties different from conventional antibodies. In this study a library containing the VHH genes of a llama immunized with recombinant inner capsid protein VP6 was generated. Binders directed to VP6, in its native conformation within the viral particle, were selected and characterized. Four selected VHH directed to conformational epitopes of VP6 recognized all human and animal rotavirus strains tested and could be engineered for their use in immunodiagnostic tests for group A rotavirus detection. Three of the four VHH neutralized rotavirus in vivo independently of the strain serotype. Furthermore, this result was confirmed by in vivo partial protection against rotavirus challenge in a neonatal mouse model. The present study demonstrates for the first time a broad neutralization activity of VP6 specific VHH in vitro and in vivo. Neutralizing VHH directed to VP6 promise to become an essential tool for the prevention and treatment of rotavirus diarrhea.  相似文献   

11.
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.  相似文献   

12.
The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate‐binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus‐cell attachment and subsequent cell entry. Our saturation transfer difference nuclear magnetic resonance (STD NMR) and isothermal titration calorimetry (ITC) studies demonstrated that VP8*64‐224 of canine rotavirus strain K9 interacts with N‐acetylneuraminic and N‐glycolylneuraminic acid derivatives, exhibiting comparable binding epitopes to VP8* from other neuraminidase‐sensitive animal rotaviruses from pigs (CRW‐8), cattle (bovine Nebraska calf diarrhoea virus, NCDV), and Rhesus monkeys (Simian rhesus rotavirus, RRV). Importantly, evidence was obtained for a preference by K9 rotavirus for the N‐glycolyl‐ over the N‐acetylneuraminic acid derivative. This indicates that a VP4 serotype 5A rotavirus (such as K9) can exhibit a neuraminic acid receptor preference that differs from that of a serotype 5B rotavirus (such as RRV) and the receptor preference of rotaviruses can vary within a particular VP4 genotype.  相似文献   

13.
The most intensively studied rotavirus strains initially attach to cells when the "heads" of their protruding spikes bind cell surface sialic acid. Rotavirus strains that cause disease in humans do not bind this ligand. The structure of the sialic acid binding head (the VP8* core) from the simian rotavirus strain RRV has been reported, and neutralization epitopes have been mapped onto its surface. We report here a 1.6-A resolution crystal structure of the equivalent domain from the sialic acid-independent rotavirus strain DS-1, which causes gastroenteritis in humans. Although the RRV and DS-1 VP8* cores differ functionally, they share the same galectin-like fold. Differences between the RRV and DS-1 VP8* cores in the region that corresponds to the RRV sialic acid binding site make it unlikely that DS-1 VP8* binds an alternative carbohydrate ligand in this location. In the crystals, a surface cleft on each DS-1 VP8* core binds N-terminal residues from a neighboring molecule. This cleft may function as a ligand binding site during rotavirus replication. We also report an escape mutant analysis, which allows the mapping of heterotypic neutralizing epitopes recognized by human monoclonal antibodies onto the surface of the VP8* core. The distribution of escape mutations on the DS-1 VP8* core indicates that neutralizing antibodies that recognize VP8* of human rotavirus strains may bind a conformation of the spike that differs from those observed to date.  相似文献   

14.
Monoclonal antibodies directed against two rotavirus surface proteins (vp3 and vp7) as well as a rotavirus inner capsid protein (vp6) were tested for their ability to protect suckling mice against virulent rotavirus challenge. Monoclonal antibodies to two distinct epitopes of vp7 of simian rotavirus strain RRV neutralized RRV in vitro and passively protected suckling mice against RRV challenge. A monoclonal antibody directed against vp3 of porcine rotavirus strain OSU neutralized three distinct serotypes in vitro (OSU, RRV, and UK) and passively protected suckling mice against OSU, RRV, and UK virus-induced diarrhea. The role of vp3 in eliciting protection against heterotypic rotavirus challenge should be considered when developing a vaccine with cloned rotavirus genes. Alternatively, immunization with a reassortant rotavirus containing vp3 and vp7 from two antigenically distinct rotavirus parents might protect against diarrhea induced by two or more rotavirus serotypes.  相似文献   

15.
Rhesus rotavirus (RRV) gene 4 was cloned into lambda bacteriophage, inserted into a polyhedrin promoter shuttle plasmid, and expressed in Sf9 cells by a recombinant baculovirus. The baculovirus-expressed VP4 protein made up approximately 5% of the Spodoptera frugiperda-infected cell protein. Monoclonal antibodies that neutralize the virus bound to the expressed VP4 polypeptide, indicating that the expressed VP4 protein was antigenically indistinguishable from viral VP4. In addition, we have determined that the baculovirus-expressed VP4 protein bound to erythrocytes and functions as the RRV hemagglutinin. The endogenous hemagglutinating activity of the VP4 protein, like the virus, was inhibited by guinea pig antirotavirus hyperimmune serum and by VP4-specific neutralizing monoclonal antibodies. The human erythrocyte protein, glycophorin, also inhibited hemagglutination by RRV or the expressed VP4 protein and appears to be the rotavirus erythrocyte receptor. The baculovirus-expressed VP4 protein was conserved functionally and antigenically in the absence of other outer or inner capsid rotavirus components and represents a logical candidate for future immunological studies.  相似文献   

16.
Rotavirus particles are activated for cell entry by trypsin cleavage of the outer capsid spike protein, VP4, into a hemagglutinin, VP8*, and a membrane penetration protein, VP5*. We have purified rhesus rotavirus VP4, expressed in baculovirus-infected insect cells. Purified VP4 is a soluble, elongated monomer, as determined by analytical ultracentrifugation. Trypsin cleaves purified VP4 at a number of sites that are protected on the virion and yields a heterogeneous group of protease-resistant cores of VP5*. The most abundant tryptic VP5* core is trimmed past the N terminus associated with activation for virus entry into cells. Sequential digestion of purified VP4 with chymotrypsin and trypsin generates homogeneous VP8* and VP5* cores (VP8CT and VP5CT, respectively), which have the authentic trypsin cleavages in the activation region. VP8CT is a soluble monomer composed primarily of beta-sheets. VP5CT forms sodium dodecyl sulfate-resistant dimers. These results suggest that trypsinization of rotavirus particles triggers a rearrangement in the VP5* region of VP4 to yield the dimeric spikes observed in icosahedral image reconstructions from electron cryomicroscopy of trypsinized rotavirus virions. The solubility of VP5CT and of trypsinized rotavirus particles suggests that the trypsin-triggered conformational change primes VP4 for a subsequent rearrangement that accomplishes membrane penetration. The domains of VP4 defined by protease analysis contain all mapped neutralizing epitopes, sialic acid binding residues, the heptad repeat region, and the membrane permeabilization region. This biochemical analysis of VP4 provides sequence-specific structural information that complements electron cryomicroscopy data and defines targets and strategies for atomic-resolution structural studies.  相似文献   

17.
This study describes, for the first time, the production and use of an "internal-image" anti-idiotypic monoclonal antibody (MAb) to elicit a rotavirus-specific antibody response. An immunoglobulin G2a MAb, designated RQ31 (MAb1), specific for the outer capsid protein VP4 of bovine Q17 rotavirus and capable of neutralizing viral infection in vitro was used to generate an anti-idiotypic MAb (MAb2). This MAb2, designated RQA2, was selected by enzyme-linked immunosorbent assay (ELISA) using F(ab')2 fragments of RQ31. RQA2 (MAb2) inhibited the binding of RQ31 (MAb1) to the virus but had no effect on the binding of other rotavirus-specific MAbs. The MAb2 also inhibited virus neutralization mediated by MAb1 in a dose-dependent fashion. Naive guinea pigs immunized with the MAb2 produced anti-anti-idiotypic antibodies (Ab3) that reacted with bovine Q17 rotavirus in an ELISA and neutralized rotavirus infection in vitro. The Ab3 response was characterized as MAb1-like because the Ab3 recognizes only the Q17 and neonatal calf diarrhea virus rotavirus strains in ELISA, as did RQ31 (MAb1). The Ab3 response also possessed two other characteristics of RQ31: the abilities to bind the 1.36 (double-capsid) but not the 1.38 (single-capsid) purified rotavirus fraction in ELISA and to immunoprecipitate the VP4 rotavirus protein.  相似文献   

18.
A cell lysate prepared from MA104 cells that had been infected with human rotavirus KUN strain (HRV-KUN) contained a 35-kilodalton protein capable of binding to MA104 cells. The binding of the 35-kilodalton protein was inhibited by a serotype 2-specific antiserum but not by antisera to other serotypes. Not only trypsin-treated, infectious HRV-KUN but also untreated, noninfectious virions effectively competed with the 35-kilodalton protein for the same cell surface binding sites. One monoclonal anti-VP7 (AH6) absorbed the 35-kilodalton protein from the HRV-KUN-infected cell lysate, whereas another monoclonal anti-VP7 (S2-2G10) inhibited the virions to compete with the 35-kilodalton protein for the cell surface binding sites. Both anti-VP7 (S2-2G10) and anti-VP3 (K-1532, K-376) monoclonal antibodies had the virus-neutralization activity, but only anti-VP7 inhibited virus adsorption. On the other hand, anti-VP3 monoclonal antibodies were capable of completely inhibiting the infection of preadsorbed HRV-KUN as long as virions were not yet internalized. Subsequent studies with [35S]methionine-labeled and purified HRV-KUN showed that not only trypsin-treated, infectious virions but also untreated, noninfectious virions were capable of efficient target cell binding and internalization. The internalization modes of these two HRV-KUN preparations were, however, quite different. Only the components of the inner capsid were internalized from trypsin-treated virions, whereas no such selective internalization was seen with untreated virions. Furthermore, anti-VP3 inhibited this selective internalization of the inner capsid from the infectious virions. From these results we conclude that VP7 is the HRV-KUN cell attachment protein and that adsorption of HRV-KUN via VP7 is independent of trypsin treatment, whereas the limited cleavage of VP3 by trypsin, which is essential for the development of HRV-KUN infectivity, is needed for the selective internalization of the inner capsid components, a process that is apparently essential for HRV-KUN infection.  相似文献   

19.
P Isa  S Lpez  L Segovia    C F Arias 《Journal of virology》1997,71(9):6749-6756
The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号