首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we examined the effects of transforming growth factor beta (TGF beta) on the proliferation and differentiation of rabbit tracheal epithelial cells in primary culture. Treatment of these cells with TGF beta inhibits cell proliferation in a time- and dose-dependent manner; concentrations as low as 1 pM are able to inhibit cell growth. Concomitantly, TGF beta causes cells to accumulate in the G0/G1 phase of the cell cycle and a sharp reduction in the ability of the cells to form colonies after subculture at clonal density. These results indicate that TGF beta induces terminal cell division in these cells. The inhibition of cell growth is accompanied by changes in cell morphology and a stimulation of the formation of cross-linked envelopes. TGF beta enhances the levels of transglutaminase activity and cholesterol sulfate, two markers of squamous differentiation. Our results indicate that TGF beta induces terminal squamous cell differentiation in rabbit tracheal epithelial cells. Retinoic acid (RA) does not affect the commitment to terminal cell division induced by TGF beta, but inhibits the expression of the squamous phenotype. Growth of normal human bronchial epithelial cells was affected by TGF beta in a way similar to that of rabbit tracheal epithelial cells. Several carcinoma cell lines tested were quite resistant to TGF beta, whereas growth of one carcinoma cell line was stimulated by TGF beta. These results indicate that a modified response to TGF beta could be one mechanism involved in the aberrant growth control of malignant cells.  相似文献   

2.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

3.
4.
The transforming growth factors-β (TGFs-β) family of genes plays important roles in cell growth and differentiation in many cell types. TGFβ modulates the synthesis and accumulation of extracellular matrix (ECM) components and the expression of cell surface receptors for ECM components. TGFβ is increased in alveolar lining fluid during inflammatory reactions of the lung and has been identified in alveolar epithelial cells of developing lungs and hyperplastic type II cells during repair. However, little is known about how TGFβ may regulate expression of extracellular matrix proteins and ECM receptors in lung alveolar epithelial cells. Laminin, a major glycoprotein component of epithelial basement membrane, is synthesized and secreted by alveolar epithelial cells. To study the effects of TGFβ on modulation of laminin and its integrin receptors α6β1 and α3β1 in lung alveolar epithelial cells, a rat alveolar type II cell-derived cell line, LM5, was incubated with TGFβ1 (0-100 pg/ml) in serum-free medium for 0-16 h. We examined the expression of integrin subunits and laminin β2 chain (s-laminin) mRNAs and protein expression. By Northern blot analysis, TGFβ1 induced dose-dependent increases in α6 and β1 mRNA levels. TGFβ1 also increased the expression of laminin β2 chain mRNA at 12-16 h poststimulation. In contrast, TGFβ decreased α3 mRNA expression. Immunoprecipitation studies of TGFβ1-treated cells showed increased surface expression of both α6 and β1 protein while surface expression of the α3 integrin subunit was decreased. The same treatment resulted in increased laminin protein expression. These data suggest that TGFβ1 may regulate alveolar epithelial cell differentiation in part through its modulation of integrins and laminin chains.  相似文献   

5.
6.
Summary We are studying the regulation of ciliated cell differentiation using an in vitro model of tracheal regeneration. Previously, we reported that removal of growth stimulating compounds such as epidermal growth factor (EGF) and cholera toxin reduced DNA synthesis and cell number while increasing ciliated cell differentiation (Clark et al., 1995). This result suggested that the induction of growth arrest may stimulate terminal differentiation of airway epithelial cells into ciliated cells. Transforming growth factor βs (TGFβs) inhibit epithelial cell proliferation and have also been shown to stimulate epithelial cell differentiation. In this study, the effect of TGFβ1 on growth and ciliated cell differentiation of rat tracheal epithelial (RTE) cells was examined. TGFβ1 inhibited [3H]thymidine incorporation by RTE cells in a dose-dependent manner. A 40% inhibition was observed after a 24-h incubation with 10 pM TGFβ1. Continuous treatment with TGFβ1 (1–50 pM) also reduced cell number during the time when ciliogenesis occurs. This reduction resulted in part from a loss of cells through exfoliation, in addition to the inhibition of proliferation. The exfoliated cells exhibited several morphological features characteristic of apoptosis, including shrunken cells, condensed and fragmented nuclei, and intact organelles. In addition, electrophoretic analysis of genomic DNA analysis isolated from exfoliated cells demonstrated the presence of a nucleosomal ladder. However, in contrast to the removal of EGF, treatment with TGFβ1 for 7 d did not increase ciliated cell differentiation. TGFβ1 is, therefore, capable of inhibiting proliferation and increasing apoptosis in RTE cells without stimulating ciliated cell differentiation.  相似文献   

7.
Vocal fold epithelial cells likely play an important, yet currently poorly defined, role in healing following injury, irritation and inflammation. In the present study, we sought to identify a possible role for growth factors, epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGFβ1), in epithelial regeneration during wound healing as a necessary first step for uncovering potential signaling mechanisms of vocal fold wound repair and remodeling. Using a rat model, we created unilateral vocal fold injuries and examined the timeline for epithelial healing and regeneration during early and late stages of wound healing using immunohistochemistry (IHC). We observed time-dependent secretion of the proliferation marker, ki67, growth factors EGF and TGFβ1, as well as activation of the EGF receptor (EGFR), in regenerating epithelium during the acute phase of injury. Ki67, growth factor, and EGFR expression peaked at day 3 post-injury. Presence of cytoplasmic and intercellular EGF and TGFβ1 staining occurred up to 5 days post-injury, consistent with a role for epithelial cells in synthesizing and secreting these growth factors. To confirm that epithelial cells contributed to the cytokine secretion, we examined epithelial cell growth factor secretion in vitro using polymerase chain reaction (PCR). Cultured pig vocal fold epithelial cells expressed both EGF and TGFβ1. Our in vivo and in vitro findings indicate that epithelial cells are active participants in the wound healing process. The exact mechanisms underlying their roles in autocrine and paracrine signaling guiding wound healing await study in a controlled, in vitro environment.  相似文献   

8.
Transforming growth factor type β (TGFβ) is a pleiotropic regulator of cell growth with specific high-affinity cell-surface receptors on a large number of cells; its mechanism of action, however, is poorly defined. In this report, we utilized the mouse fibroblast line AKR-2B to explore the question of the temporal requirements during the cell cycle in regard to both the growth inhibitory and the growth stimulatory action of TGFβ. The results indicate that AKR-2B cells are most sensitive to the inhibitory action of TGFβ during early to mid-G1. In addition, TGFβ need be present only briefly (as little as l min) in order to exert its inhibitory effect on EGF-induced DNA synthesis. Likewise, the stimulatory effect of TGFβ in the absence of EGF requires only an equally brief exposure to TGFβ. Use of homogeneous 125I-labeled TGFβ in a cell-binding assay demonstrates that TGFβ bound to cell-surface receptors can readily exchange into the culture medium T1/2 = 120 min), helping to rule out the possibility that persistent receptor-bound TGFβ is the source of a continuous stimulus. The data indicate that TGFβ exposure induces a stable state in the cell (T1/2 = 20 h) similar to but distinct from the state of “competence” induced by platelet-derived growth factor (PDGF).  相似文献   

9.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.  相似文献   

10.
11.
12.
It has previously been demonstrated that rabbit tracheal epithelial cells in primary culture undergo terminal differentiation at confluence to yield cornified cells much in analogy to epidermal keratinocytes and that one biochemical marker of this process seems to be the accumulation of cholesterol sulfate by the cells. The current work addresses the possible causes of this accumulation. Our studies show that the stimulation of cholesterol sulfate is paralleled by an increased activity of the biosynthetic enzyme cholesterol sulfotransferase. Squamous differentiated cells exhibited 20- to 30- fold higher levels of this enzyme activity than that in undifferentiated cells. As with other markers of squamous cell differentiation, the increase in cholesterol sulfotransferase can be prevented by the inclusion of retinoids in the cell culture medium. Inhibition of sulfotransferase levels can be observed at concentration of retinoic acid as low as 10(-11) M. The enzyme activity is optimal at pH 7 in buffers containing 0.2 M NaCl and 0.01% Triton X-100. Apparent Michaelis constants for the substrates 3'-phosphoadenosine-5'-phosphosulfate and cholesterol are 1 microM and 0.6 mM, respectively. Our results indicate that the increase in cholesterol sulfotransferase is the proximate cause for the accumulation of cholesterol sulfate in rabbit tracheal epithelial cells during squamous cell differentiation.  相似文献   

13.
Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM induces immunogenic cell death. In particular, BLM is able to induce ROS-mediated reticulum stress and autophagy, which result in the surface exposure of chaperones, including calreticulin and ERp57, and liberation of HMBG1 and ATP. BLM induces anti-tumor immunity which relies on calreticulin, CD8+ T cells and interferon-γ. We also find that, in addition to its capacity to trigger immunogenic cell death, BLM induces expansion of Foxp3+ regulatory T (Treg) cells via its capacity to induce transforming growth factor beta (TGFβ) secretion by tumor cells. Accordingly, Treg cells or TGFβ depletion dramatically potentiates the antitumor effect of BLM. We conclude that BLM induces both anti-tumor CD8+ T cell response and a counteracting Treg proliferation. In the future, TGFβ or Treg inhibition during BLM treatment could greatly enhance BLM anti-tumor efficacy.  相似文献   

14.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

15.
16.

Background

Chronic alcohol abuse causes oxidative stress and impairs alveolar epithelial barrier integrity, thereby rendering the lung susceptible to acute edematous injury. Experimentally, alcohol-induced oxidative stress increases the expression of transforming growth factor β1 (TGFβ1) in the lung; however, we do not know the precise contribution of various alveolar cells in this process. In the present study, we focused on cell-cell interactions between alveolar macrophages and epithelial cells and the potential mechanisms by which TGFβ1 may become activated in the alveolar space of the alcoholic lung.

Methods

Primary alveolar macrophages and epithelial cells were isolated from control- and alcohol-fed Sprague–Dawley rats. Expression of TGFβ1 and the epithelial integrin αvβ6 were examined by real time PCR and either immunocytochemistry or flow cytometry. Alveolar epithelial cells were cultured on transwell supports in the presence of macrophage cell lysate from control- or alcohol-fed rats or in the presence of viable macrophages ± alcohol. Epithelial barrier function was assessed by transepithelial resistance (TER) and paracellular flux of Texas Red dextran.

Results

TGFβ1 expression was increased in alveolar macrophages from alcohol-fed rats, and TGFβ1 protein was predominantly membrane-bound. Importantly, alveolar macrophage cellular lysate from alcohol-fed rats decreased TER and increased paracellular dextran flux in primary alveolar epithelial cell monolayers as compared to the lysates from control-fed rats. Alcohol-induced epithelial barrier dysfunction was prevented by anti-TGFβ1 antibody treatment, indicating the presence of bioactive TGFβ1 in the macrophage lysate. In addition, co-culturing macrophages and epithelial cells in the presence of alcohol decreased epithelial barrier function, which also was prevented by anti-TGFβ1 and anti-αvβ6 treatment. In parallel, chronic alcohol ingestion in vivo, or direct treatment with active TGFβ1 in vitro, increased the expression of αvβ6 integrin, which is known to activate TGFβ1, in alveolar epithelial cells.

Conclusions

Taken together, these data suggest that interactions between alveolar epithelial cells and macrophages contribute to the alcohol-mediated disruption of epithelial barrier function via the expression and activation of TGFβ1 at points of cell-cell contact.  相似文献   

17.
We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-β1 (TGFβ1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGFβ1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGFβ1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGFβ1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGFβ1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGFβ1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest differentiation.  相似文献   

18.
19.
20.
Although interleukin 2 (IL-2) has been presumed to have a highly circumscribed range of target cells limited largely to classic immune cell populations, the presence of functional IL-2 receptors in rat epithelial cell lines has recently been demonstrated. Limited information is available about the functional effects of IL-2 on intestinal epithelial cells. The effect of recombinant IL-2 on intestinal epithelial cell migration was assessed using a previously describedin vitromodel of epithelial restitution by quantitation of cells migrating into standard wounds established in confluent IEC-6 cell monolayers. Transforming growth factor β content was assessed by Northern blot and bioassay. Exogenous IL-2 enhanced epithelial cell restitutionin vitroon average 3.8-fold; this effect was independent of cell proliferation. Enhancement of restitution through IL-2 could be completely blocked through antibodies directed against TGFβ1and interleukin-2 receptor, indicating that stimulation of epithelial cell restitution is specifically enhanced by interleukin-2 and mediated through a TGFβ-dependent pathway. In addition, increased expression of TGFβ1mRNA and increased levels of bioactive TGFβ peptide in wounded monolayers treated with IL-2 compared to unwounded monolayers cultured in serum-deprived medium alone support the notion that enhancement of epithelial cell restitutionin vitrois mediated through a TGFβ-dependent pathway. These studies suggest that IL-2, a potent cytokine whose biological origin and targets have been presumed to be largely limited to lymphocyte and macrophage populations, may play a role in preserving the integrity of the intestinal epithelium following various forms of injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号