首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Phylogenetic relationships between water striders (Heteroptera: Gerridae) of genus Gerris Fabricius were examined using molecular and morphological characters. The molecular dataset was 820 bp DNA from the 3′ half of the mitochondrial gene encoding cytochrome oxidase subunit I and 515 bp DNA from the nuclear gene encoding elongation factor 1 alpha. The morphological dataset was a slightly modified version of a previously published dataset. Representatives from all eight recognized species groups of Gerris, as well as six species from three related genera, including Gigantometra gigas, Limnoporus esakii, L. rufoscutellatus, Aquarius najas, A. conformis and A. paludum, were included. Unweighted parsimony analyses of the COI sequences gave a topology with strong support for only those nodes that were already recognized as closely related based on morphological characters. Similar analyses of EF‐1α gave a cladogram with a topology quite different from that based on morphology and COI. Unweighted parsimony analyses of the ‘total evidence’ dataset largely supports the traditional view of Gerris phylogeny. Finally, the implications of the reconstructed phylogeny in relation to biogeography and ecological phylogenetics of Gerris is discussed.  相似文献   

2.
No other group of insects have been more successful in colonizing marine habitats than water striders and their allies (Heteroptera, Gerromorpha). More than 10% of the 1700 species of gerromorphan bugs are marine. Water striders have colonized the marine environment at least 14 times. The fossil records suggest that marine habitats were invaded by members of the families Veliidae and Gerridae earlier than 20-30 and 45 million years before present, respectively. Estuaries and mangrove swamps are undoubtedly the ancestral type of habitat, but water striders have diversified further in marine habitats including the surface of the open ocean (sea skaters. Halobates). Except for being obligatorily flightless, marine water striders are structurally very similar to their non-marine relatives. Physiological and behavioral rather than morphological specializations are likely to have been key innovations in the transition from limnic to marine habitats. The oldest and most species-rich clades originated in the Indo-West Pacific region. There are 3.5 times as many species of marine water striders in the Indo-West Pacific region than in the Atlantic/Caribbean/East Pacific region. This "diversity anomaly" is explained historically by region-specific differences in the origin and proliferation of clades, in paleoclimate and paleogeography, and in the propensity for dispersal between regions.  相似文献   

3.
The comparatively good fossil record of post-Palaeozoic echinoids allows rates of morphological change to be estimated over the past 260 million years and compared with rates of molecular evolution. Parsimony analysis of morphological data, based predominantly on skeletal characteristics, and parsimony, distance and maximum likelihood analyses of molecular data, from the first 380 bases from the 5' end of the 28S rRNA molecule, for 10 species of echinoid produce congruent phylogenies. The molecular sequence chosen is demonstrably far from saturation and sister groups have divergence times ranging from about 15 to 260 Ma. Parsimony analysis allows the great majority of molecular and morphological apomorphies to be placed in one of 18 independent geological time intervals, providing a direct measure of rates of evolution for periods in the geological past. Because most molecular fixed point mutations in our sequences cannot be polarized unambiguously by outgroup comparison (making the outgroup states effectively random), distance and parsimony analyses both tend spuriously to root the echinoid tree on the longest internal branch. A topology identical to that derived from morphological data is, however, obtained using Maximum Likelihood and also parsimony analysis where outgroup rooting is restricted to more conserved regions. This is taken as the correct topology for assessing rates of evolution. Overall, both morphological and molecular changes show a moderately strong correlation with time elapsed, but a weaker correlation with one another. Statistically significant differences in evolutionary rate are found between some, but not all, pair-wise comparisons of sister lineages for both molecular and morphological data. The molecular clock rate for echinaceans is three times faster than that for cidaroids and irregular echinoids. Spearman's rank correlation test, which requires only relative magnitude of changes to be known, suggests that morphological change has a slightly better correlation with time than does molecular change, averaged over all ten species. However, when just echinaceans are considered an extremely good correlation is found between the number of molecular changes and time elapsed, whereas morphological change remains poorly correlated. Thus, molecular rates approximate to a clocklike model within restricted echinoid clades, but vary significantly between clades. Averaging results over all echinoids produces a correlation that is no better than the correlation between morphological change and time elapsed.  相似文献   

4.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

5.
Five species of sea skaters, genus Halobates Eschscholtz, are the only insects to have successfully colonized the open ocean. In addition, 36 species are found in sheltered coastal waters throughout tropical Indo-Pacific. The taxonomy of the genus is relatively well known, but reliable hypotheses about phylogenetic relationships are required if the biogeography and evolution of sea skaters is to be discussed in a meaningful way. This work presents the results of a study of new characters from the genital segments, especially those of the male phallus and the female gynatrial complex, and a reinterpretation for several other characters. In total 64 characters were scored for 26 species of Halobates , two species ofAsclepios and one species of Metrocoris. With Asclepios and Metrocoris species as outgroups, the character state sets were analysed cladistically using the computer program Hennig86. After critical evaluations of both characters and clades, a phylogeny for Halobates is presented and its taxonomic implications are discussed. A number of monophyletic species groups are delimited. One genus-level synonymy and three species-level synonymies are suggested. The evolution of Halobates is discussed in the light of the reconstructed phylogeny and present knowledge of the ecology and behaviour of sea skaters. A hypothesis of ecological evolution in halobatine water striders is proposed and tested.  相似文献   

6.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   

7.
Taxa missing large amounts of data pose challenges that may hinder the recovery of a well‐resolved, accurate phylogeny and leave questions surrounding their phylogenetic position. Systematists commonly have to contend with one or two species in a group for which there is little or no material available suitable for recovering molecular data. It is unclear whether these taxa can be better placed using analyses based on morphological data only, or should be included in broader analyses based on both morphological and molecular data. The extinct madtom catfish Noturus trautmani is known from few specimens for which molecular data are unavailable. We included this taxon in parsimony and Bayesian analyses of relationships of madtom catfishes based on a combination of morphological and molecular data. Results indicate that using a combination of morphological and molecular data does a better job at providing a phylogenetic placement for N. trautmani than morphology alone, even though it is missing all of its molecular characters. We provide a novel hypothesis of relationships among Noturus species and recommendations for classification within the group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 60–75.  相似文献   

8.
A phylogenetic analysis of genera within the informal suballiance Beaufortia (family Myrtaceae), largely endemic to Australia and New Caledonia, is presented based on separate and combined data sets for 5S and ITS-1 spacer regions of nuclear ribosomal DNA. The two sets were not in conflict but the 5S data set was more informative. Data were analysed using conventional parsimony, jackknife parsimony, and three-item parsimony analyses. Three-item analysis gave more resolved trees than conventional parsimony analysis. The Beaufortia suballiance includes two major clades, with all Australian representatives of Callistemon (shown to be monophyletic) and most Australian representatives of Melaleuca forming one of these. The sister clade comprises a well-defined group of endemic New Caledonian taxa (classified as Callistemon and Melaleuca ), some Australian species of Melaleuca , a clade including the Western Australia/Northern Territory genera Beaufortia, Lamarchea , and Regelia , and a clade including the south-west Western Australian genera Calothamnus, Eremaea, Conothamnus , and Phymatocarpus . All molecular analyses sup port the monophyly of Conothamnus and of Regelia , genera for which a number of species were included. Three-item analysis of the combined data set supports the monophyly of Beaufortia . The findings have implications for both taxonomy and biogeography.  相似文献   

9.
Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage.  相似文献   

10.
The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号