首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
The secondary structure of the SP6/mouse insulin precursor RNA was determined by psoralen cross-linking experiments. A series of long-range contacts occur within the left half of the pre-mRNA that contains the intervening sequence. Multiple secondary structures for the pre-mRNA exist since some of the interactions share common sites. In splicing buffer but without the splicing extract added, many of these interactions are stable up to at least 50 degrees C. These interactions, however, are dissociated during the in vitro splicing reaction. This dissociation requires ATP and it occurs during the first 30 min. of the splicing reaction. Pre-mRNAs containing psoralen cross-links in different locations within the RNA molecule were purified and used as substrates for in vitro splicing. Psoralen cross-links at any of the double-stranded regions resulted in complete inhibition of the splicing reaction. This indicates that destabilization of the secondary structure of the SP6/mouse insulin pre-mRNA is necessary for in vitro splicing.  相似文献   

3.
Assembly of pre-mRNA splicing complex is cap dependent.   总被引:11,自引:5,他引:6       下载免费PDF全文
To study the influence of the ubiquitous cap structure of nuclear pre-mRNAs on the assembly of a functional splicing complex, the in vitro splicing of a truncated human metallothionein pre-mRNA was examined in the presence of the cap analogue m7GTP. Significant inhibition of splicing was observed at a concentration as low as 5 microM m7GTP. Analysis of the splicing reaction on glycerol density gradients showed two complexes sedimenting at 45S and 22S. When the reaction was carried out in presence of m7GTP a marked decrease of the material sedimenting at 45S, representing the active splicing complex, was observed. When capped pre-mRNA was replaced by uncapped pre-mRNA, complex formation was significantly reduced. These data indicate that the cap structure plays an important yet unknown role in the assembly of spliceosomes.  相似文献   

4.
D Frendewey  W Keller 《Cell》1985,42(1):355-367
We have investigated the early events of pre-mRNA splicing in vitro by sucrose gradient sedimentation analysis. Time course experiments revealed the assembly, in two steps, of a large (50S) pre-mRNA splicing complex, preceded by formation of two other complexes that sediment at approximately 22S and 35S. Pre-mRNA and the intermediates and products of the in vitro splicing reaction cosediment with the 50S complex, while only pre-mRNA is associated with the 22S and 35S complexes. No splicing is observed in the absence of a 50S complex. Formation of the 50S complex requires ATP, whereas formation of the 22S and 35S complexes does not. U-snRNPs are necessary for assembly of the 35S and the 50S complexes but not for assembly of the 22S complex. Analysis with mutant substrate RNAs demonstrated that a polypyrimidine stretch near the 3' splice site and an intact 5' splice site are absolutely required for splicing complex formation.  相似文献   

5.
6.
7.
8.
The in vitro splicing of pre-mRNA of the human beta-globin gene in the presence of HeLa cell nuclear extract was investigated. Splicing was inhibited by auto-antibodies against U4 and U6 snRNP particles. No intermediates or products of the splicing reaction were evident in the presence of antibodies against U4 and U6 snRNPs which suggests their involvement in pre-mRNA splicing.  相似文献   

9.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27  
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

10.
Despite the important role of alternative splicing in various aspects of biological processes, our ability to regulate this process at will remains a challenge. In this report, we asked whether a theophylline-responsive riboswitch could be adapted to manipulate alternative splicing. We constructed a pre-mRNA containing a single upstream 5' splice site and two 3' splice sites, of which the proximal 3' splice site is embedded in theophylline-responsive riboswitch. We show that this pre-mRNA spliced with preferential utilization of proximal 3' splice site in vitro. However, addition of theophylline to the splicing reaction promoted splicing at distal 3' splice site thereby changing the ratio of distal-to-proximal 3' splice site usage by more than twofold. Our data suggest that theophylline influenced 3' splice site choice without affecting the kinetics of the splicing reaction. We conclude that an in vitro selected riboswitch can be adapted to control alternative splicing, which may find many applications in basic, biotechnological, and biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号