首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
植物生长素受体蛋白研究现状   总被引:3,自引:1,他引:2  
受体是研究生长素信号传导链的关键环节,因为只有生长素与生长素受体结合以后才会引起后续的级联反应,生长素受体的发现对探索和了解生长素调控机制是极其重要的.目前所发现的生长素结合蛋白(受体)有TIR1和ABP1.扼要的介绍生长素受体TIR1的结构及其与生长素的结合位点,阐述了TIR1在基因水平上的调控和AUX/IAA被泛素化后最终被26S蛋白酶体降解的过程.概述了ABPI的结构、活性位点、性质以及ABP1的作用机理的模型.  相似文献   

2.
生长素信号转导途径与植物胁迫反应相互作用的证据(英)   总被引:6,自引:0,他引:6  
生长素影响植物多种生理过程 ,有报道显示生长素可能影响植物对逆境胁迫的反应。我们利用cDNA阵列技术鉴定拟南芥 (Arabidopsisthaliana (L .)Heynh .)的生长素应答基因 ,发现多个胁迫应答基因受生长素抑制 ,包括ArabidopsishomologofMEKkinase1(ATMEKK1) ,RelA/SpoThomolog 3(At_RSH3) ,Catalase 1(Cat1)和Ferritin 1(Fer1) ,说明生长素可调节胁迫应答基因的表达。此外 ,我们还证明吲哚乙酸 (IAA)合成途径中的腈水解酶基因nitrilase 1(NIT1)和nitrilase 2 (NIT2 )受盐胁迫诱导 ,提示在逆境条件下IAA的合成可能随之增加。我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导 ,发现胁迫应答基因在野生型和生长素不敏感突变体auxinresistant2 (axr2 )中可被盐胁迫诱导 ,而在auxinresistant1_3(axr1_3)中则不被诱导 ,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径。  相似文献   

3.
胡孔琴  丁兆军 《植物学报》2019,54(3):293-295
依赖于受体TIR1以及下游Aux/IAAs-ARFs介导的信号通路是目前研究最为深入的生长素信号转导途径。徐通达课题组最新研究发现, 高浓度生长素能够诱导质膜定位的TMK1激酶发生剪切, 导致其羧基(C-)端部分转入细胞核并磷酸化修饰细胞核内的非经典IAA32/34, 后者通过与生长素响应转录因子ARFs互作, 调控下游基因表达, 从而解析了生长素通过TMK1-IAA32/34-ARFs通路调控植物顶端弯钩内外侧差异性生长的分子机制。该研究发现了一条新的生长素TMK1- IAA32/34-ARFs信号途径, 此信号通路独立于经典生长素受体TIR1介导的生长素信号转导通路。  相似文献   

4.
胡孔琴  丁兆军 《植物学报》1983,54(3):293-295
依赖于受体TIR1以及下游Aux/IAAs-ARFs介导的信号通路是目前研究最为深入的生长素信号转导途径。徐通达课题组最新研究发现, 高浓度生长素能够诱导质膜定位的TMK1激酶发生剪切, 导致其羧基(C-)端部分转入细胞核并磷酸化修饰细胞核内的非经典IAA32/34, 后者通过与生长素响应转录因子ARFs互作, 调控下游基因表达, 从而解析了生长素通过TMK1-IAA32/34-ARFs通路调控植物顶端弯钩内外侧差异性生长的分子机制。该研究发现了一条新的生长素TMK1- IAA32/34-ARFs信号途径, 此信号通路独立于经典生长素受体TIR1介导的生长素信号转导通路。  相似文献   

5.
生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应.我们利用cDNA阵列技术鉴定拟南芥(Arabidopsis thaliana (L.) Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinase1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) 和Ferritin 1 (Fer1),说明生长素可调节胁迫应答基因的表达.此外,我们还证明吲哚乙酸(IAA)合成途径中的腈水解酶基因nitrilase 1 (NIT1) 和nitrilase 2 (NIT2) 受盐胁迫诱导,提示在逆境条件下IAA的合成可能随之增加.我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2 (axr2) 中可被盐胁迫诱导,而在auxin resistant 1-3 (axr1-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径.  相似文献   

6.
TIR1终于被确证为生长素受体   总被引:1,自引:0,他引:1  
生长素受体-TIR1近期被确定,解决了生长素研究中长期令人困惑的一大难题。生长素首先和TIR1结合并且促进TIR1和Aux/IAA蛋白质的相互作用。TIR1和其他至少3种F-box蛋白质一起发挥作用,激活了泛素化的蛋白质降解过程,启动了基因转录,从而导致了植物生长发育过程中的生长素反应。  相似文献   

7.
酵母单杂交系统分离胡萝卜生长素应答元件结合因子   总被引:1,自引:0,他引:1  
齐眉  黄美娟  陈凡 《中国科学C辑》2002,32(2):105-112
高等植物胚根发育过程中, 生长素是植物细胞进行分裂、延伸和分化的信号, 对根的形成等起着不可缺少的促进作用. 生长素应答元件(AuxRE)存在于很多生长素诱导基因的启动子中, 并具有对生长素作用的应答活性. 本研究构建了特定发育时期的胡萝卜体细胞胚cDNA-AD融合表达文库, 同时构建了含有生长素应答元件的重组报告质粒. 以生长素应答元件为诱饵, 通过酵母单杂交系统筛选获得1个阳性克隆, 该阳性克隆在酵母中表达的AxRF1蛋白能够在体外结合实验中与生长素应答元件结合, 对AxRF1是否有可能参与胡萝卜体细胞胚中生长素诱导基因的表达调控进行了讨论.  相似文献   

8.
生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应。我们利用cDNA阵列技术鉴定拟南芥(Arabiopsis thaliana (L.)Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinasel(ATMEKK1),RelA/SpoT homolog 3(At-RSH3),Catalase 1(Cat1)和Ferriitn 1(Fer1)。说明生长素可调节胁迫应答基因的表达,此外,我们还证明吲哚乙酸(LAA)合成途径中的腈水解酶基因nitrilase 1(NIT1)和nitrilae 2(NIT2)受盐胁迫诱导,提示在逆境条件下1AA的合成可能随之增加,我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2(axr2)中可被盐胁迫诱导,而在auxin resitant1-3(axl-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径。  相似文献   

9.
植物生长素受体   总被引:2,自引:0,他引:2  
扼要介绍了生长素结合蛋白ABP1和泛素-蛋白酶体SCFTIR1作为生长素受体研究的新进展,并以这2种受体为基础初步分析了植物生长素受体体系的内容和范围。  相似文献   

10.
生长素信号转导途径及参与的生物学功能研究进展   总被引:4,自引:0,他引:4  
张娟 《生命科学研究》2009,13(3):272-277
生长素参与植物生长和发育诸多过程,调控众多生理反应,在植物整个生命周期中自始至终发挥着调节作用.研究生长素的作用机制,对深入认识植物生长发育的生理过程有着重要的意义.综述了与生长素信号转导途径相关的3类主要蛋白组分:生长素/吲哚乙酸蛋白(auxin/indoleacetic acids proteins,Aux/IAAs)、生长素响应因子(auxin response factors,ARFs)和SCF(SKP1-CDC53/CUL1-F-box)复合体,及相关的SGT1(suppressor of the G2 allele of skp1)基因,并对生长素相关基因表达的模式及其生物学功能进行了总结.  相似文献   

11.
生长素结合蛋白能够与生长素特异性结合,因而有可能直接被用作生长素免疫分析和生物传感测定中的高特异性、高亲和力识别分子.本研究通过RT-PCR获得水稻生长素结合蛋白1(ABP1)cDNA,将其克隆到原核表达载体pET-32a(+)中,成功构建pET-32a-ABP1 重组表达载体.经酶切、PCR及DNA测序鉴定后,将阳性...  相似文献   

12.
Auxin perception and signal transduction   总被引:7,自引:1,他引:6  
The action of auxin on whole plants is very complex, but we are starting to understand how some of the earliest events are signalled in single cells. There is now good evidence that auxin induces rapid events at the plasma membrane by binding to a population of the auxin-binding protein ABPI, which is associated with a membrane-spanning docking protein, possibly a G-protein-coupled receptor (GPCR). ABPI is targeted to the endoplasmic reticulum (ER) lumen, but it does not appear to bind auxin within the ER and its function (if any) in this location is unknown. It is also not known how the protein reaches the cell surface, but it is possible that it is exported together with its docking protein. Binding of auxin causes a conformational change affecting the C-terminus of ABPI and it is likely that this change serves to activate the receptor at the plasma membrane. The signal transduction pathway appears to involve activation of phospholipase A2(PLA2) leading to the production of lipid second messengers which activate the plasma membrane proton ATPase (H-ATPase) by a phosphorylation-dependent mechanism. Branch points exist that could potentially lead from this pathway to responses in the nucleus, but there is not yet any firm evidence that ABP1 is involved in such responses. Since intracellular auxin concentrations are correlated with sensitivity in some cases, it is possible that there is also a site of auxin perception inside the cell.  相似文献   

13.
In the last few years, a large number of auxin-binding proteins (ABPs) have been reported. Implicitly or explicitly, interest in such proteins resides in their possible role as auxin receptors. Many of these proteins are characterized as ABPs solely by their susceptibility to covalent photolabeling by tritiated azido-indole-3-acetic acid. In most cases where the labeled polypeptides have been identified, they turn out to have roles unconnected with primary auxin perception. It seems likely that auxin is binding to sites of catholic specificity in these cases and the influence of experimental protocols on the data is discussed. Because the term ABP implies that auxin binding affects the function of that protein, the importance of establishing further criteria before photolabeled peptides can be termed ABPs is emphasized. Applying such criteria, only a very few ABPs are currently of interest and only one of these, maize ABP1, has been characterized in detail. This protein is located primarily within the lumen of the endoplasmic reticulum, although an important fraction appears to function on the outside of the plasma membrane. The protein has a wide species distribution and it now seems highly probable that it is a genuine auxin receptor, the only protein for which such a function has yet been established. This conclusion is based on three independent lines of electrophysiological evidence, together with confocal imaging of cytoplasmic pH changes.  相似文献   

14.
Auxin action in a cell-free system   总被引:24,自引:0,他引:24  
  相似文献   

15.
16.
The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.  相似文献   

17.
Auxin-binding protein 1 (ABP1) has an essential role in auxin-dependent cell expansion, but its mechanisms of action remain unknown. Our previous study showed that ABP1-mediated cell expansion is auxin concentration dependent. However, auxin distribution in plant tissue is heterogeneous, complicating the interpretation of ABP1 function. In this study, we used cells in culture that have altered expression of ABP1 to address the mechanism of ABP1 action at the cellular level, because cells in culture have homogeneous cell types and could potentially circumvent the heterogeneous auxin-distributions inherent in plant tissues. We found that cells overexpressing ABP1 had altered sensitivity to auxin and were larger, with nuclei that have undergone endoreduplication, a finding consistent with other data that support an auxin extracellular receptor role for ABP1. These cells also had a higher free auxin pool size, which cannot be explained by altered auxin transport. In cells lacking detectable ABP1, a higher rate of auxin metabolism was observed. The results suggest that ABP1 has, beyond its proposed role as an auxin extracellular receptor, a role in mediating auxin availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号