首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Fumigation of soybean leaves (Glycine max [L.] Merr. with ozone caused stippling and silvering at the same time that large accumulations of the isoflavonoid compounds daidzein, coumestrol, and sojagol occurred. Nitrogen dioxide and sulfur dioxide caused lesser accumulation of the isoflavonoids, and peroxyacetyl nitrate did not result in significant accumulation. Visible toxicity and chemical changes in ozone-fumigated leaves were similar to the hypersensitive disease defense reaction of soybean leaves to the pathogen Pseudomonas glycinea, except that the phytoalexin hydroxyphaseollin was not produced in the ozone-treated leaves.  相似文献   

2.
Actinomycin D inhibited the synthesis of poly(A)-containing messenger RNA in healthy soybean (Glycine max [L.] Merr. cv. Harosoy 63) hypocotyls and in hypocotyls inoculated with the pathogenic fungus Phytophthora megasperma var. sojae A. A. Hildb., but had little effect on protein synthesis within 6 hours. Blasticidin S, conversely, inhibited protein synthesis in the hypocotyls without exhibiting significant effects on messenger RNA synthesis. The normal cultivar-specific resistance of the Harosoy 63 soybean hypocotyls to the fungus was completely diminished by actinomycin D or blasticidin S. The fungus grew as well in hypocotyls treated with either inhibitor as it did in the near isogenic susceptible cultivar Harosoy, and production of the phytoalexin glyceollin was concomitantly reduced. The effects of actinomcyin D and blasticidin S were pronounced when the treatments were made at the time of fungus inoculation or within 2 to 4 hours after inoculation, but not after longer times. These results indicated that the normal expression of resistance to the fungus and production of glyceollin both required de novo messenger RNA and protein synthesis early after infection. Furthermore, actinomycin D and blasticidin S also were effective in suppressing resistance expression and glyceollin production in soybean hypocotyls when inoculated with various Phytophthora species that were normally nonpathogenic to the plants. This indicated that the mechanism of general resistance to these normally nonpathogenic fungi also involves de novo messenger RNA and protein synthesis and production of glyceollin.  相似文献   

3.
Colonization of soybean roots by the biocontrol fungus Verticillium lecanii was studied in vitro and in situ. For in vitro experiments, V. lecanii was applied to soybean root tip explant cultures. Four weeks after inoculation, the fungus grew externally on at least half of the roots (all treatments combined), colonizing 31% to 71% of root length (treatment means). However, when a potato dextrose agar plug was available as a nutrient source for the fungus, root tips inoculated soon after transfer were not colonized by V. lecanii unless Heterodera glycines was present. Scanning electron microscopy of colonized roots from in vitro cultures revealed a close fungus-root association, including fungal penetration of root cells in some specimens. In the greenhouse, soybeans in sandy soil and in loamy sand soil were treated with V. lecanii applied in alginate prills. The fungus was detected at greater depths from the sandy soil than from the loamy sand soil treatment, but fungus population numbers were small and variable in both soils. Root box studies coupled with image processing analysis of the spatial distribution of V. lecanii in sandy soil supported these findings. Verticillium lecanii was detected randomly in the rhizosphere and soil of root boxes, and was rarely extensively distributed. These in vitro and in situ experiments indicate that V. lecanii can grow in association with soybean roots but is a poor colonizer of soybean rhizosphere in the soil environment.  相似文献   

4.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

5.
Feeding experiments with 4′,7-dihydroxyisoflavone-[4-14C] (daidzein), 2′,4′,7-trihydroxyisoflavone-[T] and (±)-4′,7-dihydroxyisoflavanone-[T] (dihydrodaidzein) in suspension cultures of mung bean (Phaseolus aureus Roxb.) roots have shown that daidzein is a better precursor of the coumestan coumestrol than is the trihydroxyisoflavone and that dihydrodaidzein can also be converted very efficiently. The results provide further evidence for the intermediacy of a pterocarp-6a-en in coumestrol biosynthesis, and also indicate the possible existence of a 'metabolic grid' of isoflavones and isoflavanones in P. aureus.  相似文献   

6.
The glucosinolate contents of two different cultivars of Brassica rapa (Herfstraap and Oleifera) infected with Leptosphaeria maculans and Fusarium oxysporum were determined. Infection triggered the accumulation of aliphatic glucosinolates (gluconapin, progoitrin, glucobrassicanapin and gluconapoleiferin) and indole glucosinolate (4-hydroxy-glucobrassicin) in Herfstraap and of two indole glucosinolates (glucobrassicin and 4-hydroxy-glucobrassicin) in Oleifera. While total and aliphatic glucosinolates decreased significantly in Oleifera, a large increase was observed in Herfstraap after fungal infection. The indole glucosinolate glucobrassicin accumulated in Oleifera at a higher rate than Herfstraap especially after infection with F. oxysporum. Apparently the interaction between fungus and B. rapa is cultivar and fungal species specific.  相似文献   

7.
Soybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.  相似文献   

8.
Moesziomyces penicillariae (Brefield) Vànky is a basidiomycete fungus responsible for smut disease on pearl millet, an important staple food in the sub-Sahelian zone. We revisited the life cycle of this fungus. Unlike other Ustilaginales, mating of sporidia was never observed and monoclonal cultures of monokaryotic sporidia were infectious in the absence of mating with compatible partner. These data argued for an atypical monokaryotic diploid cell cycle of M. penicillariae, where teliospores only form solopathogenic sporidia. After inoculation of monoclonal solopathogenic strains on spikelets, the fungus infects the ovaries and induces the folding of the micropilar lips, as observed during early pollination steps. The infected embryo then becomes disorganized and the fungus invades peripheral ovary tissues before sporulating. We evaluated the systemic growth abilities of the fungus. After root inoculation, mycelium was observed around and inside the roots. As argued by transmission electron microscopy (TEM) observations and polymerase chain reaction (PCR) detection using specific primers for M. penicillariae, the fungus can grow from roots to the caulinar meristems. In spite of this systemic growth, no sori were formed on the varieties of pearl millet tested after root inoculation. All together, these data suggest that the reduced life cycle of M. penicillariaei.e. dispersal of ‘ready to infect’ solopathogenic sporidia, floral infection – is an adaptation to the aetiology of this disease to short-cycle pearl millet varieties from the sub-Sahel.  相似文献   

9.
Aged discs cut from Kennebec potato tubers were inoculated with one of the following: an elicitor preparation from mycelia of Phytophthora infestans race 4, zoospores from either race 4 or race TY complex of this fungus, or sodium arachidonate. At 24 hr intervals after inoculation, four successive 0.5 mm thick layers of tissue were cut from the discs. This tissue was analysed for accumulated phytoalexins and also used to prepare cell-free enzyme systems for lubimin biosynthesis. In tissue treated with either the elicitor preparation or race 4 zoospores, levels of phytoalexin accumulation were highest in the first layer of tissue. Surprisingly, however, cell-free lubimin biosynthesis from [1-14C]isopentenyl pyrophosphate was also generally greater in preparations derived from the first 0.5 mm of tissue. Accumulation of phytoalexins in tissue inoculated with zoospores from race TY complex was very low, whereas cell-free biosynthetic activity was initially comparable to that seen in preparations from tissue treated with the elicitor preparation. By the end of the experimental period lower layers of tissue from discs treated with sodium arachidonate contained the highest levels of phytoalexins and yielded cell-free enzyme preparations with the greatest lubimin biosynthetic activity.  相似文献   

10.
Heterodera glycines was grown in monoxenic culture on soybean roots and then inoculated with the antagonistic fungus Verticillium lecanii. Use of root explant cultures allowed evaluation of the fungus-nematode interaction with the nematode attached to roots or removed from the host, and avoided contamination with other fungi. From 16 hours to 14 days following inoculation, female and cyst samples were examined with the light microscope, or prepared for either conventional or low-temperature scanning electron microscopy. Within 16 hours, hyphae had begun colonizing the gelatinous matrices (GM). The fungus proliferated in the GM of some specimens within a week, but was rarely seen in unhatched eggs. Fungus penetration holes in female and cyst walls were observed 3 days after inoculation; penetration through nematode orifices was not seen at that time. More cysts than females were colonized at the earliest sampling dates. Specimens associated with external hyphae exhibited variable internal colonization, ranging from no fungal penetration to extensive mycelial growth.  相似文献   

11.
Control of postharvest lemon diseases by biofumigation with the volatile-producing fungus Muscodor albus was investigated. In vitro exposure to M. albus volatile compounds for 3 days killed Penicillium digitatum and Geotrichum citri-aurantii, causes of green mold and sour rot of lemons, respectively. Lemons were wound-inoculated with P. digitatum and placed in closed 11-L plastic boxes with rye grain cultures of M. albus at ambient temperature. There was no contact between the fungus and the fruit. Biofumigation for 24–72 h controlled green mold significantly, even when treatment began 24 h after inoculation. Effectiveness was related to the amount of M. albus present. In tests conducted inside a 11.7-m3 degreening room with 5 ppm ethylene at 20 °C, green mold incidence on lemons was reduced on average from 89.8 to 26.2% after exposure to M. albus for 48 h. Ethylene accelerates color development in harvested citrus fruit. M. albus had no effect on color development. Biofumigation in small boxes immediately after inoculation controlled sour rot, but was ineffective if applied 24 h later. G. citri-aurantii may be less sensitive to the volatile compounds than P. digitatum or escapes exposure within the fruit rind. Biofumigation with M. albus could control decay effectively in storage rooms or shipping packages.  相似文献   

12.
Amsacta moorei entomopoxvirus DNA synthesis was detected in Estigmene acrea cells by [3H]thymidine incorporation 12 hr after virus inoculation. Hybridization of 32P-labeled Amsacta entomopoxvirus DNA to the DNA from virus-infected cells indicated that viral-specific DNA synthesis was initiated between 6 and 12 hr after virus inoculation. A rapid increase in the rate of virus DNA synthesis was detected from 12 to 24 hr after virus inoculation. Amsacta entomopoxvirus protein biosynthesis in E. acrea cells was studied by [su35S]methionine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extracellular virus and virus-containing occlusion bodies were first detected in virus-infected cell cultures 18 hr after virus inoculation. Thirty-seven virus structural proteins, ranging in molecular weight from 13,000 to 208,000 were detected in both occluded and nonoccluded forms of the virus. The biosynthesis of virus structural proteins increased rapidly from 18 to 34 hr after infection. A major viral-induced protein corresponding in molecular weight to viral occlusion body protein (110,000) was detected approximately 24 hr after virus inoculation.  相似文献   

13.
Soybean aphid, Aphis glycines, has caused serious economic damage to soybean across the North Central US since its introduction to North America in 2000. The management of another invasive soybean pest, Asian soybean rust, Phakopsora pachyrhizi, using foliar fungicide applications has the potential to impact soybean aphid populations by suppressing beneficial fungal entomopathogens. In 2005 and 2006, we applied recommended soybean rust fungicide treatments, consisting of strobilurin and triazole fungicides, to small soybean plots in two locations to assess if such applications might suppress aphid fungal epizootics. In Lamberton, MN, in 2005, during the epizootic, fungicide-treated plots averaged 2.0 ± 0.7% (mean ± SE) disease prevalence while untreated plots averaged 14.2 ± 5.6%. In 2007, we applied strobilurin and strobilurin-triazole mix fungicides to single-plant microplots either before or after release of Pandora neoaphidis, the most commonly observed aphid pathogen in 2005 and 2006. Treatments that contained a mixture of two active ingredients significantly lowered peak and cumulative aphid disease prevalence in both early and late reproductive stage soybeans indicating that fungicide mixtures used to manage soybean rust can negatively impact an aphid-specific fungal pathogen. However, no consistent soybean aphid population response was observed in these studies of low levels of aphid fungal infection.  相似文献   

14.
This study describes the development of an efficient and reliable activation tagging system for the medicinal fungus Antrodia cinnamomea. For successful Agrobacterium tumefaciens-mediated transformation, different parameters were considered. The Agrobacterium concentration of 5 × 108 cfu ml−1, 1 mm acetosyringone, 25-d-old mycelia at 0.2 g ml−1, and co-culture period of 6 d were found to be the most optimal conditions for enhancing the transformation efficiency. The mitotic stability of transferred DNA (T-DNA) was demonstrated by growing eight randomly selected putative transformants in malt extract agar medium for five subcultures. Insertion of T-DNA into the genome of transformants was confirmed by PCR and Southern hybridization. Results showed that 88 % of the mutants contained a single T-DNA insertion. Two of the mutants were observed with different triterpenoid profiles compared with the untransformed cultures. Our results suggest a new functional genomics approach to tag the triterpenoid biosynthesis genes in A. cinnamomea.  相似文献   

15.
Local microbial tolerance was investigated in a murine model of peritonitis. Peritoneal bacterial burden and inflammatory cytokine concentrations were determined at different times, within 48 h after infection. Peritoneal macrophages were harvested from naïve mice or from mice 48 h after infection and underwent ex vivo stimulation with different concentrations of Klebsiella. Cytokine secretion was determined in the supernatants. Peritoneal bacteria concentrations, remained relatively steady between 24 h (median: 5.04 log CFU) and 48 h (median: 5.19 log CFU) after infection. Peritoneal cytokine concentrations peaked early but were already diminished at 48 h after infection, despite persistent high bacteria levels. Macrophages, harvested from naïve mice responded vigorously to ex vivo stimulation with 105 CFU and 2 × 108 CFU Klebsiella. Cells harvested from animals 48 h after infection, were unresponsive to an ex vivo stimulation with 105 CFU Klebsiella, but fully responded to 108 CFU. Persistent intraabdominal bacterial infection induced dose dependent microbial tolerance in peritoneal macrophages.  相似文献   

16.
Free sterol fractions were isolated from the marine sponges Phyllospongia madagascarensis, Scalarispongia sp., Oceanapia sp., Monanchora clathrata and studied by GLC, GLC–MS, and spectroscopy NMR. P. madagascarensis and Scalarispongia sp. contained common Δ5-sterols; cholesterol was shown to be a main sterol of both the sponges. Oceanapia sp. contained stanols and minor Δ5-sterols with 24R-24,25-methylene-5α-cholestan-3β-ol as a main constituent. Many free sterols from M. clathrata were Δ7-series compounds, and latosterol was a main sterol. Δ4-3-Ketosteroids and Δ5-sterol esters were found in the Antarctic sponge Haliclona sp., but free sterols were practically absent except for trace amount of cholesterol. A chemotaxonomic application of sterols in relation to the genera Phyllospongia, Oceanapia and the family Crambeidae is provided. The known cases of the absence of sterols in sponges and probable reasons of the phenomenon are discussed.  相似文献   

17.
The titer of Amsacta entomopoxvirus (EPV) protein detected in murine L-929 cells by enzyme-linked immunosorbent assay (ELISA) decreased to within preimmune serum levels by 24 hr after inoculation of the virus which indicates that Amsacta EPV structural protein biosynthesis does not occur in the vertebrate cell line. A viral-induced protein of approximately 100,000 Mr was detected by [35S]methionine incorporation 4 hr after inoculation of Tn-368 cells with Amsacta EPV. Biosynthesis of protein which reacted with vaccina antiserum was detected in Estigmene acrea (BTI-EAA) cells by ELISA 10 hr after inoculation with 10 PFU of virus per cell. The amount of putative vaccinia structural protein detected in BTI-EAA cells increased approximately twofold by 70 hr after virus inoculation. No increase in vaccinia structural protein biosynthesis was detected in BTI-EAA cells inoculated with vaccinia virus previously inactivated by heat and UV light.  相似文献   

18.
Differential bacterial counts were made on the intestinal and caecal contents of chickens after inoculation with a standard dose of 320 000 freshly sporulated oocysts of Eimeria brunetti.  相似文献   

19.
The influx of inflammatory cells towards the peritoneal cavity in rats inoculated intraperitoneally with subcellular preparations of the fungus Paracoccidioides brasiliensis was studied. In addition to the dead fungus, also fractions F1 of the cell wall, which mainly consisted of polysaccharides and the lipid extract, induced intense cell migration 4 hr after inoculation, with a greatly increased number of polymorphonuclear leucocytes (PMN). Study of the kinetics of cell influx showed that both fraction F1 and the lipid extract initially induced intense PMN migration between the 4th and 24th hr after inoculation of these agents, followed by migration of mononuclear cells (MN) around the 48th hr. We also observed that migration of these cells increased gradually after inoculation of growing doses of fraction F1. The present data suggest that polysaccharides and lipids isolated from P. brasiliensis may participate in the initial phase of the inflammatory response in paracoccidioidomycosis.  相似文献   

20.
The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500 million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号