首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Crude extracts of both vegetative cells and glycerol-induced microcysts of Myxococcus xanthus contained the following enzyme activities: phosphofructokinase, phosphoglucoisomerase, fructose-1,6-diphosphatase, fructosediphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphopyruvate carboxylase, citrate synthase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, and uridine diphosphate glucose pyrophosphorylase. With the exception of isocitrate dehydrogenase, which was present at a fivefold higher concentration in microcysts, all activities in extracts from both types of cells were essentially equal. Hexokinase and pyruvate kinase could not be detected in extracts from either type of cell. Microcysts metabolized acetate at a lower rate than did vegetative cells. Most of this decrease was reflected in a substantial decrease in ability of microcysts to oxidize acetate to CO(2). In addition, microcysts and vegetative cells showed a different distribution of (14)C-label from incorporated acetate.  相似文献   

2.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

3.
Enzymes of Energy Metabolism in the Mudpuppy Retina   总被引:1,自引:0,他引:1  
Abstract: The distributions of glycogen phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, citrate synthase, malate dehydrogenase, β-hydroxyacyl CoA dehydrogenase, and adenylokinase were determined in the mudpuppy retina. Distinct differences were found in regard to the glycolytic and oxidative capacities of the various layers. In the outer retina, citric acid cycle enzymes were high while glycolytic enzymes were low. Synaptic zones were distinctly enriched in all energy-producing enzymes. Mudpuppy photoreceptors were found to be rich in phosphorylase but poor in glucose-6-phosphate dehydrogenase, suggestive of some evolutionary divergence from mammals in the metabolic machinery which is used to support the visual process.  相似文献   

4.
The activities of glycolytic and other enzymes of carbohydrate metabolism were measured in free-living and parasitic stages of the rabbit stomach worm Obeliscoides cuniculi. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, hexokinase, glucosephosphate isomerase, phosphofructokinase, aldolase, triosephosphate isomerase, α-glycerophosphatase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenol pyruvate carboxykinase, lactate dehydrogenase, alcohol dehydrogenase, and glucose-6-phosphatase activities were present in worms recovered 14, 20 and 190 days postinfection.The presence of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase indicates the possible function of a pentose phosphate pathway and a capacity for gluconeogenesis, respectively, in these worms.The ratio of pyruvate kinase (PK) to phosphoenol pyruvate carboxykinase (PEPCK) less than I in parasitic stages suggests that their most active pathway is that fixing CO2 into phosphoenol pyruvate to produce oxaloacetate.Low levels of glucose-6-phosphate dehydrogenase, triosephosphate isomerase, PEPCK and PK were recorded in infective third-stage larvae stored at 5°C for 5 and 12 mos. The ratio of PK to PEPCK greater than 1 indicates that infective larvae preferentially utilize a different terminal pathway than the parasitic stages.  相似文献   

5.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

6.
Activity of several enzymes of the glycogen and carbohydrate metabolism is studied in HT 29 colon adenocarcinoma cell line and in HT 29 tumors developed in nude mice, by reference to the normal human colon mucosa. Activity of glycogen synthase, glycogen phosphorylase, pyruvate kinase, fructose-1,6-diphosphatase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase is found to be increased in both the cultured cells and the tumors. It indicates that the biochemical strategy of malignant cells, due to the neoplastic transformation process, involves specific changes in the carbohydrate metabolism of tumor as well as in vitro growing correspondent cell line.  相似文献   

7.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

8.
Abstract— In order to study the influence of intracellular pH on the carbohydrate metabolism of brain tissue, the concentrations of glucose, glucose-6-phosphate, pyruvate, lactate, citrate, α-oxoglutarate, malate, glutamate, aspartate and ammonia were measured in rats exposed to 6–40% CO2, for 45 min. Hypercapnia of increasing severity gave rise to progressive increases in the concentrations of glucose, glucose-6-phosphate and ammonium ion and to progressive decreases in the concentrations of all metabolic acids measured. The results fit with aH+ inhibition of a rate-limiting step between glucose-6-phosphate and pyruvate, and by inference from the results published by others it may be assumed that this step is the phosphofructokinase reaction. Since the proportionally largest decrease occurred in a α-oxoglutarate, the results might be compatible either with an inhibition of a second rate-limiting step such as isocitrate dehydrogenase, or with a loss of α-oxoglutarate through carboxylation to citrate.  相似文献   

9.
Ribose-1,5-bisphosphate is synthesized in a reaction that uses ribose-1(or 5)-P as the phosphoryl acceptor and the acyl-P of 3-phosphoglyceryl phosphate as the donor. Glucose-1,6-bisphosphate is synthesized in a similar reaction. The relative activity with the two substrates remains unchanged over almost 300-fold purification of the enzyme, indicating that glucose-1,6-bisphosphate synthase catalyzes both reactions. The relative V/Km values for alternative phosphoryl acceptors are ribose-1-P (1); glucose-1-P (0.30); mannose-1-P and ribose-5-P (0.11); glucose-6-P (0.10); 2-deoxyglucose-6-P (0.03); and 2-deoxyribose-5-P (0.02). Fructose-1- and 6-phosphates are not substrates. The synthesis of both ribose-1,5-bisphosphate and glucose-1,6-bisphosphate is inhibited by physiologically significant levels of fructose-1,6-bisphosphate, glycerate-2,3-bisphosphate, glycerate-3-phosphate, citrate, and inorganic phosphate. Ribose-1,5-bisphosphate is a strong activator of brain phosphofructokinase.  相似文献   

10.
The following parameters were determined in the rabbit psoas muscle after perfusion in the presence of either insulin, propranolol, or isoproterenol: Concentrations of cyclic AMP, glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glucose-1-phosphate, glucose 6-phosphate, and fructose-1,6-bisphosphate. Maximum and "regulatory" activities of the enzymes glycogen phosphorylase, glycogen synthase, phosphofructokinase, and histone-phosphorylating protein kinase.  相似文献   

11.
Oxidative stress during cardiac arrest may inactivate myocardial enzymes and thereby exacerbate ischemic derangements of myocardial metabolism. This study examined the impact of cardiac arrest on left ventricular enzymes. Beagles were subjected to 5 min of cardiac arrest and 5 min of open-chest cardiac compressions (OCCC) before epicardial direct current countershocks were applied to restore sinus rhythm. Glutathione/glutathione disulfide redox state (GSH/GSSG) and a panel of enzyme activities were measured in snap-frozen left ventricle. To test whether oxidative stress during arrest inactivated the enzymes, metabolic (pyruvate) or pharmacological (N-acetyl-l-cysteine) antioxidants were infused intravenously for 30 min before arrest. During cardiac arrest, activities of phosphofructokinase, citrate synthase, aconitase, malate dehydrogenase, creatine kinase, glucose-6-phosphate dehydrogenase, and glutathione reductase fell by 56, 81, 55, 34, 42, 55, and 45%, respectively, coincident with 50% decline in GSH/GSSG. OCCC effected full recovery of glutathione reductase and partial recovery of citrate synthase and aconitase, in parallel with GSH/GSSG. Phosphofructokinase, malate dehydrogenase, creatine kinase, and glucose-6-phosphate dehydrogenase recovered only after cardioversion. Antioxidant pretreatments augmented phosphofructokinase, aconitase, and malate dehydrogenase activities before arrest and enhanced these activities, as well as those of citrate synthase and glucose-6-phosphate dehydrogenase, during arrest. In conclusion, cardiac arrest reversibly inactivates several important myocardial metabolic enzymes. Antioxidant protection of these enzymes implicates oxidative stress as a principal mechanism of enzyme inactivation during arrest.  相似文献   

12.
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - ASC L-ascorbic acid - APX ascorbate peroxidase - Ce CO2 concentration in air in the measuring cuvette during photosynthesis measurements - Ci CO2 concentration in the leaf intercellular spaces during photosynthesis measurement - Chl chlorophyll - DHA dehydroascorbic acid - DHA reductase dehydroascorbate reductase - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gluc glucose - GR glutathione reductase - Gsw stomatal conductance with units as mmol H2O m-2 s-1 - GSSG oxidized glutathione - GSH reduced glutathione - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6P dehydrogenase glucose-6-phosphate dehydrogenase - 6PG 6-phosphogluconate - 6PG dehydrogenase 6-phosphogluconate dehydrogenase - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - MAL malate - MDHA reductase monodehydroascorbate reductase - PE post-emergence - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - PYR pyruvate - Pn net CO2 photoas-similation in leaves - PPFD photosynthetic photon flux density with units of mol photons m-2 s-1 - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TCA cycle tricarboxylic acid cycle - Triose-P DHAP+GAP  相似文献   

13.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

14.
Glycogen synthase, glycogen phosphorylase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase were determined for the first time in the necessary lobes of Lachi from late embryonic chicks. The activities of these enzymes were compared with those found in other glycogen-metabolizing tissues, specifically the glycogen body, liver, and skeletal muscle, obtained from the same embryos. The data show that, as in the glycogen body, the accessory lobes of Lachi lack glucose-6-phosphatase, but contain relatively high activity levels of glycogen synthase I, total and active glycogen phosphorylase, and the dehydrogenases of glucose-6-phosphate and 6-phosphogluconate. The percent of glycogen synthase I activity in the Lachi lobes is from two- to 20-fold greater than observed in the glycogen body, liver, or muscle, whereas the percent of glycogen phosphorylase a activity is comparable to that of the liver, but greater than that in the glycogen body or muscle. The activity of each dehydrogenase of the pentose phosphate cycle in the Lachi lobes is similar to that noted in the glycogen body, but is over two- or fivefold greater than that activity found in muscle or liver. Our data, together with other recent evidence, suggest that the role of glycogen in these functionally enigmatic tissues may be to support the precocious process of myelin synthesis in the developing bird, as well as possibly to provide alternate sources of energy for the avian central nervous system.  相似文献   

15.
The levels of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, and cyclic phosphodiesterase activities were examined in growing and starving plasmodia of Physarum polycephalum. The activities of lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase decreased whereas that of cyclic phosphodiesterase increased. The change in activity of lactate dehydrogenase was the result of the variation of the activity of a single enzyme quite similar to the lactate dehydrogenases of higher animals.  相似文献   

16.
Leaves on transgenic tobacco plants expressing yeast-derived invertase in the apoplast develop clearly demarcated green and bleached sectors when they mature. The green areas contain low levels of soluble sugars and starch which are turned over on a daily basis, and have high rates of photosynthesis and low rates of respiration. The pale areas accumulate carbohydrate, photosynthesis is inhibited, and respiration increases. This provides a model system to investigate the sink regulation of photosynthetic metabolism by accumulating carbohydrate. The inhibition of photosynthesis is accompanied by a decrease of ribulose-1,5-bisphosphate and glycerate-3-phosphate, and an increase of triosephosphate and fructose-1,6-bisphosphate. The extracted activities of ribulose-1,5-bisphosphate carboxylase, fructose-1, 6-bisphosphatase and NADP-glyeraldehyde-3-phosphate dehydrogenase decreased. The activity of sucrose-phosphate synthase remained high or increased, an increased portion of the photosynthate was partitioned into soluble sugars rather than starch, and the pale areas showed few or no oscillations during transitions between darkness and saturating light in saturating CO2. The increased rate of respiration was accompanied by an increased level of hexose-phosphates, triose-phosphates and fructose-1,6-bisphosphate while glycerate-3-phosphate and phosphoenolpyruvate decreased and pyruvate increased. The activities of pyruvate kinase, phosphofructokinase and pyrophosphate: fructose-6-phosphate phosphotransferase increased two- to four-fold. We conclude that an increased level of carbohydrate leads to a decreased level of Calvin-cycle enzymes and, thence, to an inhibition of photosynthesis. It also leads to an increased level of glycolytic enzymes and, thence, to a stimulation of respiration. These changes of enzymes are more important in middle- or long-term adjustments to high carbohydrate levels in the leaf than fine regulation due to depletion of inorganic phosphate or high levels of phosphorylated metabolites.Abbreviations Fru 1,6bisP fructose-1,6-bisphosphate - Fru 1,6bisPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc 1P glucose-1-phosphate - Glc6P glucose-6-phosphate - NADP-GAPDH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PFK phosphofructokinase - PEP phosphoenolpyruvate - PFP pyrophosphate:fructose-6-phosphate phosphotransferase - PGA glycerate-3-phosphate - PK pyruvate kinase - Pi inorganic phosphate - Ru1,5bisP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SPS sucrose-phosphate synthase - triose-P triose-phosphates  相似文献   

17.
Abstract— Blood glucose, cerebral cortical glucose, and eight metabolites of the glycolytic pathway and citric acid cycle were measured during insulin hypoglycemic stupor and during the first 100s after glucose administration. In hypoglycemic mice that had lost righting ability, blood and brain glucose were decreased 89% and 96% respectively, but glucose-6-phosphate fell only 23%. Other glycolytic and citric acid cycle intermediates were decreased 31–77%. Fructose bisphosphate, 3-phosphoglycerate and phosphopyruvate fell more than glucose-6-phosphate, but less than pyruvate and lactate. Citrate fell less than a-ketoglutarate and malate. These results suggest that in severe hypoglycemia there is a decrease in brain glucose utilization, mediated by phosphofructokinase, but probably caused by decreased neuronal activity. An intravenous injection of glucose restored brain glucose to 75% of normal within 10s and caused return of righting ability within 60s. Glucose-6-phosphate, fructose bisphosphate, 3-phosphoglycerate, and phosphopyruvate rose to normal or near normal levels within 60s, whereas pyruvate, lactate, citrate, ã-ketoglutarate, and malate changed little in this period. This suggests that although glucose given to hypoglycemic animals rapidly enters the glycolytic pathway in brain (and behavior is almost normal), total neuronal activity, and hence overall glucose metabolism, remains subnormal for several minutes.  相似文献   

18.
A comparison of branchial enzyme profiles indicates that the gills of Periophthalmodon schlosseri would have a greater capacity for energy metabolism through glycolysis than those of Boleophthalmus boddaerti. Indeed, after exposure to hypoxia, or anoxia, there were significant increases in the lactate content in the gills of P. schlosseri. In addition, exposure to hypoxia or anoxia significantly lowered the glycogen level in the gills of this mudskipper. It can be deduced from these results that the glycolytic flux was increased to compensate for the decrease in ATP production through anaerobic glycolysis. Different from P. schlosseri, although there was an increase in lactate production in the gills of B. boddaerti exposed to hypoxia, there was no significant change in the branchial glycogen content, indicating that a reversed Pasteur effect might have occurred under such conditions. In contrast, anoxia induced an accumulation of lactate and a decrease in glycogen in the gills of B. boddaerti. Although lactate production in the gills of these mudskippers during hypoxia was inhibited by iodoacetate, the decreases in branchial glycogen contents could not account for the amounts of lactate formed. The branchial fructose-2,6-bisphosphate contents of these mudskippers exposed to hypoxia or anoxia decreased significantly, leaving phosphofructokinase and glycolytic rate responsive to cellular energy requirements under such conditions. The differences in response in the gills of B. boddaerti and P. schlosseri to hypoxia were possibly related to the distribution of phosphofructokinase between the free and bound states.Abbreviations ADP adenosine diphosphate - ALD aldolase - ALT alanine transaminase - AST aspartate transaminase - ATP adenosine triphosphate - CS citrate synthase - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F6P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatese - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - -GDH -glycerophosphate dehydrogenase - GPase glycogen phosphorylase - HK hexokinase - HOAD 3-hydroxyacyl-CoA dehydrogenase - IDH isocitrate dehydrogenase - IOA iodoacetic acid - LDH lactate dehydrogenase - LO lactate oxidizing activity - MDH malate dehydrogenase - 3-PG 3-phosphoglyceric acid - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - PGI phosphoglucose isomerase - PGK phosphoglycerate kinase - PFK 6-phosphofructo-1-kinase - PIPES piperazine-N, N-bis-(2-ethanesulphonic acid) - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - PR pyrurate reducing activity - SE standard error - SW seawater - TPI triosephosphate isomerase  相似文献   

19.
Control of the activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malate dehydrogenase was investigated in intact rats and in hepatocyte cultures. 1) Adult females had 2-fold greater activities of hepatic glucose-6-phosphate- and 6-phosphogluconate dehydrogenases than adult males, but similar activities of malate dehydrogenase. Castrated males showed decreased activities of all three enzymes in comparison to age- and weight-matched intact controls. In starved animals the activities of all three enzymes decreased significantly. After refeeding with nonpurified diet the activities returned to the prestarved levels in females, but increased to clearly higher values in intact and castrated males. 2) Estrogen levels were in the same range in immature and adult male and female rats. Testosterone levels were highest in adult males, clearly lower in adult females (1/8) and immature males (1/8), still lower in immature females (1/15) and lowest in castrated males (1/40). A simple correlation of the sex differences in these hormone levels to sex differences in glucose-6-phosphate- and 6-phosphogluconate dehydrogenase activities was not apparent. 3) In serum-free, dexamethasone-supplemented 48-h cultures of hepatocytes from both male and female rats the basal activities of glucose-6-phosphate dehydrogenase were the same; they were increased 2-3 fold by insulin alone, 1.5 fold by estrogen alone and 4-5 fold by insulin plus estrogen. Apparently sex differences did not persist in 48-h cell cultures. 4) In 48-h cultures of male hepatocytes, then used as the experimental model, insulin alone increased the activity not only of glucose-6-phosphate dehydrogenase but also of 6-phosphogluconate and malate dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25 degrees C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD-isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP-malate dehydrogenase (11.0), ATP-citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP-isocitrate dehydrogenase (3.7), NAD-malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109mug/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3-6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP-citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号