首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

2.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

3.
Using concentrations of [3H] dihydroergokryptine between 0.1 and 5 nM, saturable binding can be demonstrated in rat cerebral cortical membranes with a dissociation constant (KD) of about 0.8 nM. α-Noradrenergic agonists and antagonists compete for the sites labeled by these low concentrations of [3H] dihydroergokryptine with relative potencies characteristics of classical α-noradrenergic receptors. The very low potency of serotonin in competing for these binding sites indicates that, in contrast to findings with higher concentrations of [3H] DHE, low concentrations do not label serotonin receptors. Moreover, the low potency of dopamine in competing for [3H] dihydroergokryptine binding in both striatal and cortical membranes indicates that no detectable portion of binding is associated with postsynaptic dopamine receptors.  相似文献   

4.
[3H] quinuclidinyl benzilate (QNB), a specific muscarinic antagonist, was utilized to identify muscarinic cholinergic receptors on dispersed anterior pituitary cells. Scatchard analysis of [3H] QNB binding to receptors departs from linearity with upward concavity. A high affinity binding site having a dissociation constant (Kd) of 1.5 nM was observed when the [3H] QNB concentration was varied from 0.15 to 20 nM. A low affinity binding site (Kd 20 nM) was observed when [3H] QNB concentration was above 20 nM. Using 10 nM [3H] QNB for binding, the second order association rate constant (k1) of 0.064 nM?1 min?1 and first order dissociation rate constant (k2) of 0.078 min?1(T12 8 min) were observed. k2/k1 = Kd of 1.22 nM is in good agreement with Kd = 1.5 nM from equilibrium data. Muscarinic cholinergic receptor antagonists, atropine and scopolamine, and agonist oxtoremorine potently competed with [3H] QNB binding. A nicotinic cholinergic receptor agonist was 50 times less potent as a competitor of [3H] QNB binding than the muscarinic agonist.  相似文献   

5.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

6.
The specific binding of [3H] pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of [3H] pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1μM) was of high affinity (Kd = 4–10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few [3H] pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.  相似文献   

7.
The high potency with which acetylcholine (ACh) inhibits the binding of the specific muscarinic agonist, [3H]cis methyldioxolane ([3H]CD), has provided the basis for the development of a radio-receptor assay for estimation of ACh. A synaptosomal preparation of the rat cerebral cortex was used as a source of muscarinic receptors. When binding assays were run at 0°C, the IC50 value of ACh was approximately 5 × 10?9 M, which corresponds to 2.5 – 10 pmoles of ACh, depending upon the assay volume. The ACh content of the rat cerebral cortex and corpus striatum was measured following fast microwave irradiation. By measuring the displacement of [3H]CD binding caused by aliquots of the supernatant from tissue homogenates and comparing the displacement values with an ACh standard curve, the ACh content of the cerebral cortex and corpus striatum was calculated to be 19 and 55 nmoles/g wet tissue weight, respectively.  相似文献   

8.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

9.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

10.
High affinity and saturable binding sites for [3H] imipramine have been demonstrated on human platelet membranes. These binding sites appear to be specific for tricyclic antidepressants and their pharmacologically-active metabolites. In contrast, inactive tricyclic compounds such as the parent iminodibenzyl and iminostilbenes do not inhibit [3H] imipramine binding. The binding of [3H] imipramine to human platelets is of high affinity (Kd ? 1.4nM), saturable (Bmax ? 625 fmols/mg prot), and sensitive to proteolytic degradation. The effects of various drugs and neurotransmitter agonists and antagonists suggests that these binding sites are pharmacologically distinct from the previously reported binding of tricyclic antidepressants to alpha-adrenergic, muscarinic-cholinergic, and histaminergic receptors. The binding characteristics of [3H] imipramine to platelets is similar to that in rat and human brain and may thus serve as a useful model in elucidating the pharmacological and physiological significance of these binding sites.  相似文献   

11.
Muscarinic receptors in the smooth muscle of the cat pylorus (pyloric sphincter) were identified by binding of the ligand (±) [3H]-quinuclidinyl benzilate ([3H]-QNB). Receptor related binding of [3H]-QNB reached steady-state in thirty minutes at 37°C, was saturable, showed pharmacologic specificity and was stereoselective. An apparent equilibrium dissociation constant, KD, of 1.9 ± 0.3 nM and maximum receptor concentration of 122 ± 13 femtomoles per mg of protein (means ± S.E.M.) were determined from Scatchard plots of [3H]-QNB binding. Hill coefficients of 0.99 and 1.01 indicated the absence of cooperative interactions. The muscarinic antagonists atropine and propantheline inhibited binding with IC50 values in the nanomolar range, whereas bethanechol was over four orders of magnitude less potent. Noncholinergic agents had little or no effect on [3H]-QNB binding. The levo isomer of QNB was about seventy times more effective at inhibiting binding than its dextro isomer while dextro benzetimide was greater than two thousand fold more active than levo benzetimide. The isomers of another anticholinergic compound, tropicamide, also competed for [3H]-QNB binding sites in a stereoselective manner, the levo isomer being eighty-five times more potent than the dextro isomer.  相似文献   

12.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

13.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

14.
Subhash  M. N.  Jagadeesh  S. 《Neurochemical research》1997,22(9):1095-1099
The effect of chronic administration of Imipramine on [3H]Spiperone binding to 5-HT2 sites and inositoltrisphosphate (IP3) levels in rat cerebral cortex was studied. Our data shows that treatment with imipramine (5 mg/kg body weight, intraperitoneally) for 30 days significantly down regulates 5-HT2 receptors sites (262 ± 29 fmol/mg protein) in cerebral cortex (38%), compared to control rats (425 ± 60 fmol/mg protein., P < 0.001). However there was no significant change in the affinity of [3H]-Spiperone binding (kd) to 5-HT2 sites in cerebral cortex after exposure to imipramine (Kd = 0.84 ± 0.11 nM). It is also observed that imipramine treatment significantly reduces 5-HT stimulated [3H]IP3 formation in cerebral cortex (6,411 ± 708 dpm/mg protein), compared to the saline treated rats (12,238 ± 1,544 dpm/mg protein; P < 0.001), with concomitant decrease in Pdtlns-4–5-P2. This study suggests that the therapeutic action of imipramine in brain might be by reducing hypersensitivity of 5-HT2 receptors by down regulation, which leads to reduced levels of inositolphospholipids. This inturn reduces the levels of IP3. In conclusion, imipramine acts at presynaptic site by blocking the reuptake of serotonin and at post synaptic site it downregulates 5-HT2 sites with decreased IP3 levels after chronic exposure.  相似文献   

15.
The objectives of this study were to characterize the effects of a chronic lithium (Li+) treatment on serotonin (5-HT) uptake sites and on 5-HT1A receptors, and to determine the eventual reversibility of the treatment. The experiments were carried out with membranes from rat cerebral cortex using 8-hydroxy-2-(propylamino)tetralin, or [3H]8-OH-DPAT, and [3H]citalopram to label 5-HT1A receptors and 5-HT uptake sites, respectively. Endogenous levels of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were measured by high-performance liquid chromatography in the cingulate cortex. The saturation curves with [3H]8-OH-DPAT were always best fitted a two-site model. After a treatment with Li+ for 28 days, no alterations in the binding parameters of [3H]8-OH-DPAT to the high- and low-affinity binding sites could be documented. However, competition curves with 5-HT to inhibit [3H]8-OH-DPAT binding revealed a decreased proportion of sites with high affinity for the agonist, together with an increased density of sites with low affinity for 5-HT, suggesting an alteration in the coupling efficacy between 5-HT1A receptors and their transduction systems. Saturation studies with [3H]citalopram showed an increase (>40%) in the density of 5-HT uptake sites after chronic Li+, suggesting a more efficient 5-HT uptake process for the treated animals, in accord with clinical observations. Although 5-HT contents in cingulate cortex remained unchanged after the treatment, 5-HIAA levels decreased (>30%), leading to a diminished (almost 50%) 5-HT turnover; and also reflecting a more efficient uptake in the treated rats, so that less 5-HT could be degraded by extracellular monoamine oxidase. All the effects revealed by [3H]8-OH-DPAT and [3H]citalopram were reversed following a recovery period of two days without Li+. Since symptoms of bipolar affective disorders may reappear if the chronic Li+ treatment is interrupted, the reversibility of the observed effects further supports the importance of central 5-HT synaptic transmission in the pathophysiology and treatment of human affective disorders.  相似文献   

16.
Abstract

Cardiac glycoside binding to rat heart membrane preparations was measured by rapid filtration technique. The binding data were analyzed using quantitative computer analysis. The experimental results using [3H]-ouabain as the labeled ligand were consistent with a model in which cardiac glycoside specific binding occurs at two independent classes of sites. The high affinity sites were characterized by a dissociation constants of 40 nM, 50 nM, and 61 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 1.3 pmoles/mg protein. The lower affinity sites for ouabain were characterized by dissociation constants of 2.3 µM, 67 nM and 71 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 3 pmoles/mg protein. Potassium ions inhibit [3H]-ouabain binding in a dose dependent manner with an IC50 of 500 µM. Quantitative computer modelling indicated that potassium inhibits ouabain binding at both binding sites.  相似文献   

17.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, p-chloromercuribenzoate, urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell.  相似文献   

18.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

19.
The binding characteristics of the β-adrenergic agonist (±)-[3H]hydroxybenzylisoproterenol to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells.  相似文献   

20.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号