首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The mechanism by which secretory proteins are segregated within the cisternal space of microsomal vesicles was studied using dog pancreas mRNA which directs the synthesis of 14 well-characterized nonglycosylated pancreatic exocrine proteins. In the absence of microsomal membranes, each of the proteins was synthesized as larger polypeptide chains (presecretory proteins). 1,000-2,000 daltons larger than their authentic counterparts as judged by polyacrylamide gel electrophoresis in SDS. Conditions optimal for the study of reconstituted rough microsomes in the reticulocyte lysate system were examined in detail using mRNA and microsomal membranes isolated from dog pancreas. Functional reconstitution of rough microsomes was considerably more efficient in the presence of micrococcal nuclease- treated membranes than in the presence of EDTA-treated membranes. Analysis for segregation of nascent secretory proteins by microsomal vesicles, using post-translational incubation in the presence of trypsin and chymotrypsin, 50 μg/ml each, was shown to be inadequate, because of the disruption of vesicles by protease activity. Addition of 1-3 mM tetracaine or 1 mM dibucaine stabilized microsomal membranes incubated in the presence of trypsin and chymotrypsin at either 0 degrees or 22 degrees C. Each of the pancreatic presecretory proteins studied was correctly processed to authentic secretory proteins by nuclease-treated microsomal membranes, as judged by both one-dimensional and two-dimensional gel electophoresis. Post-translational addition of membranes did not result in either segregation or processing of nascent polypeptide chains. Post- translational proteolysis, carried out in the presence of 3 mM tetracaine, indicated that each of the 14 characterized dog pancreas secretory proteins was quantitatively segregated by nuclease-treated microsomal vesicles. Segregation of nascent secretory proteins was irreversible, since radioactive amylase, as well as the other labeled secretory proteins, remained quantitatively sequestered in microsomal vesicles during a 90-min incubation at 22 degrees C after the cessation of protein synthesis. Studies employing synchronized protein synthesis and delayed addition of membranes indicated that all pancreatic presecretory proteins contain amino terminal peptide extensions. These peptide extensions are shown to mediate the cotranslational binding of presecretory proteins to microsomal membranes and the transport of nascent secretory proteins to the vesicular space. The maximum chain lengths which, during synthesis, allow segregation of nascent polypeptide chains varied between 61 (pretrypsinogen 2 + 3) and 88 (preprocarboxypeptidase A1) amino acid residues among dog pancreas presecretory proteins. Reconstitution studies using homologous and heterologous mixtures of mRNA (dog, guinea pig, and rat pancreas; rat liver) and micrococcal nuclease-treated microsomal membranes (dog, guinea pig, and rat liver; dog pancreas), in the presence of placental ribonuclease inhibitor, suggest that the translocation mechanism described is common to the rough endoplasmic reticulum of all mammalian tissues.  相似文献   

2.
D Shields 《Biochemistry》1979,18(12):2622-2627
Total rough microsomes, isolated from the dog pancreas, were stripped of membranes-bound polysomes by treatment with either EDTA or puromycin and 0.5 M KCl. The stripped microsomal membranes were isolated relatively free from contamination, by using buoyant density centrifugation, and mRNA was isolated from both the membrane fraction and the released material. Depending on the method used to strip the rough microsomes, we found a variable but small percentage (3--15%) of the cellular poly(A)-containing mRNA attached to the microsomal membranes. Reextraction of isolated microsomal membranes with puromycin and 0.5 M KCl reduced the content of membrane-associated mRNA by approximately 50%, resulting in less than 2% of the total membrane-bound polysomal mRNA remaining associated with the microsomal membranes. The membrane-associated mRNA was characterized by translation in the wheat germ cell-free protein synthesizing system, and the products were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The translation products of the membrane-associated mRNA were identical with those from the total pancreas mRNA and also with those obtained by using mRNA isolated from material released directly from the rough microsomes.  相似文献   

3.
1. Guinea-pig caseins synthesized in a mRNA-directed wheat-germ cell-free protein-synthesizing system represent the primary translation products, even though they appear to be of lower molecular weight when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in parallel with caseins isolated from guinea-pig milk. 2. Identification of the N-terminal dipeptide of the primary translational product of caseins A, B and C and alpha-lactalbumin showed that all shared a common sequence, which was identified as either Met-Arg or Met-Lys. 3. Procedures utilizing methionyl-tRNAfMet or methionyl-tRNAMet in the presence or absence of microsomal membranes during translation provide a rapid method of distinguishing between N-terminal processing of peptides synthesized in vitro and other post-translational modifications (glycosylation, phosphorylation), which also result in a change in mobility of peptides when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. The results demonstrate that guinea-pig caseins, in common with most other secretory proteins, are synthesized with transient N-terminal 'signal'-peptide extensions, which are cleaved during synthesis in the presence of microsomal membranes.  相似文献   

4.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to examine the polypeptide patterns of rat liver rough and smooth endoplasmic reticulum (ER) membrane fractions stripped of ribosomes. Approximately 67 polypeptides were resolved from the rough ER membrane fraction. The polypeptide pattern of the smooth ER membrane fraction was similar to that of the rough ER membrane fraction, but exhibited substantially lower amounts of some seven polypeptides. Three of these polypeptides, of apparent molecular weights 63,000, 65,000, and 87,000, were of particular interest, as they could not be ascribed to contamination of stripped rough ER membrane fractions by residual ribosomal polypeptides. Conditions of treatment with low concentrations of trypsin were established that markedly diminished the capacity of the stripped rough ER membrane fraction to bind ribosomes in vitro and that also effected a partial detachment of ribosomes from nonstripped rough ER membranes; the results of electrophoretic analyses of rough ER membrane fractions treated in these manners are described. Comparison of the polypeptide patterns of guinea pig, mouse, and rabbit liver ER membrane fractions with rat liver ER membrane fractions revealed considerable variations in the distribution of the polypeptides of 63,000, 65,000, and 87,000 molecular weight among the ER membrane fractions of these species. The combined results of these studies indicate that the polypeptide of 87,000 molecular weight, although particularly sensitive to attack by trypsin, is not involved in the binding of ribosomes to the rough ER membrane fraction. Studies by others (cf. Kreibich, G., Grebenau, R., Mok, W., Pereyra, B., Rodriguez-Boulan, E., and Sabatini, D. D. (1977) Fed. Proc. 36, 656) have implicated the polypeptides of 63,000 and 65,000 molecular weight in this process. The patterns of phosphorylated polypeptides of rough and smooth ER membrane fractions of rat and mouse liver were also examined, using labeling in vivo with sodium [32p]phosphate or in vitro with [gamma-32P]ATP. Approximately 25 phosphorylated components were resolved by electrophoresis in the ER membrane fractions of both species. Evidence is presented that suggests that the great majority of these components are phosphopolypeptides. Differences were noted in the patterns of phosphorylation produced by in vivo and in vitro labeling; minor differences were also observed between the patterns of phosphorylation of the rough and smooth ER membrane fractions in either situation. The overall results afford an indirect approach toward evaluating the possible involvement of specific rough ER membrane polypeptides in ribosome-binding and reveal that liver ER membranes contain a substantially greater number of phosphorylated polypeptides thatn previously reported.  相似文献   

5.
Rat liver rough microsomal membranes were stripped of bound ribosomes by treatment with puromycin and high concentrations of monovalent ions. Ribosomal subunits labeled in the RNA were detached from rough microsomes by the same procedure, recombined into monomers, and then incubated with stripped membranes in a medium of low ionic strength (25 mm-KCl, 50 mm-Tris-HCl, 5 mm-MgCl2). These ribosomes readily attached to the stripped membranes, as determined by isopycnic flotation of the reconstituted microsomes. The binding reaction was complete after incubation for five minutes at 37 °C, but also proceeded at 0 °C, at a lower rate. Scatchard plots showed a binding constant of ~8 × 107m?1 and ~5 × 10?8 mol binding sites per gram of membrane protein. Native rough microsomes showed a much lower binding capacity at 0 °C than stripped rough microsomes, but showed considerable uptake of ribosomes at 37 °C. Smooth microsomes, treated for stripping and incubated at 0 °C, accepted less than half as many ribosomes as stripped rough microsomes. Erythrocyte ghosts were incapable of binding ribosomes. Microsomal binding sites were heat sensitive, were destroyed by a brief incubation with a mixture of trypsin and chymotrypsin in the cold, and were unaffected by incubation with phospholipase C.Ribosome binding was decreased by increasing the concentration of monovalent ions and was strongly inhibited by 10?4m-aurintricarboxylic acid. Experiments with purified ribosomal subunits revealed that at concentrations of monovalent ions close to physiological concentrations (100 to 150 mm-KCl), microsomal binding sites had a greater affinity for 60 S than for 40 S subunits.Stripped rough microsomes were also capable of accepting polysomes obtained from rough microsomes by detergent treatment. Although this binding presumably involves the correct membrane binding sites, polypeptides discharged from re-bound polymers were not transferred to the vesicular cavities, as in native microsomes. The released polypeptides remained firmly associated with the outer microsomal face, as shown by their accessibility to proteases.  相似文献   

6.
I. Embryonic-chick tendon cells were pulse-labelled for 4 min with [14C]proline and the 14C-labelled polypeptides were chased with unlabelled proline for up to 30 min. Isolation of subcellular fractions during the chase period and their subsequent analysis for bacterial collagenase-susceptible 14C-labelled peptides demonstrated the transfer of procollagen polypeptides from rough to smooth microsomal fractions and thence to the extracellular medium. Parallel analyses of Golgi-enriched fractions indicated the involvement of this organelle in the secretory pathway of procollagen. Sodium dodecylsulphate/polyacrylamide-gel electrophoresis of the 14C-labelled polypeptides present in the Golgi-enriched fractions demonstrated that the procollagen polypeptides were all present as disulphide-linked pro-gamma components. 2. When similar kinetic studies of the intracellular transport of procollagen were conducted with embryonic-chick cartilage cells almost identical results were obtained, but the rate of translocation of cartilage procollagen was significantly slower than that observed for tendon procollagen. 3. When hydroxylation of procollagen polypeptides was inhibited by alphaalpha'-bipyridyl, the nascent polypeptides accumulated in the rough microsomal fraction. 4. When cells were pulse-labelled for 4min with [14C)proline and the label was chased in the presence of colchicine, secretion of procollagen was inhibited and an intracellular accumulation of procollagen 14C-labelled polypeptides was observed in the Golgi-enriched fractions. 5. The energy-dependence of the intracellular transport of procollagen was demonstrated in experiments in which antimycin A was found to inhibit the transfer of procollagen polypeptides from rough to smooth endoplasmic reticulum. 6. It is concluded that procollagen follows the classical route of secretion taken by other extracellular proteins.  相似文献   

7.
Rat liver rough microsomes treated with a series of desoxycholate (DOC) concentrations from 0.003 to 0.4% were analyzed by isopycnic sucrose density gradient centrifugation in media containing high or low salt concentrations. Tritium-labeled precursors administered in vivo were used as markers for ribosomes (orotic acid, 40 h), phospholipids (choline, 4 h), membrane proteins (leucine, 3 days), and completed secretory proteins of the vesicular cavity (leucine, 30 min). Within a narrow range of DOC concentrations (0.025–0.05%), the vesicular polypeptides were selectively released from the microsomes, while ribosomes, nascent polypeptides, and microsomal enzymes of the electron transport systems were unaffected. The detergent concentration which led to leakage of content was a function of the ionic strength and of the microsome concentration. At the lowest effective DOC concentration the microsomal membranes became reversibly permeable to macromoles as shown by changes in the density of the vesicles in Dextran gradients and by the extent of proteolysis by added proteases. Incubation of rough microsomes with proteases in the presence of 0.025% DOC also led to digestion of proteins from both faces of the microsomal membranes and to a lighter isopycnic density of the membrane vesicles.  相似文献   

8.
Studies reported from this laboratory have demonstrated that O-glycosidic glycoproteins of salivary, pulmonary, and gastrointestinal origin are acylated by fatty acyltransferase residing in Golgi and microsome-enriched fraction (Slomiany, A., Liau, Y.H., Takagi, A., Laszewicz, W., and Slomiany, B.L. (1984) J. Biol. Chem. 259, 13304-13308). Here we report on the successful purification of this enzyme from rough microsomal membranes of rat gastric mucosa and its identification in a number of diverse tissues and organs, such as heart, liver, pancreas, lung, kidney, salivary glands, and lymphoblasts. The enzymatic activity has been released from the stripped and salt-extracted microsomes with 0.5% Triton X-100 and recovered from 100,000 x g supernatant by affinity chromatography on Cibacron blue F3GA column. The retained fatty acyltransferase protein was selectively displaced from the column with 50 microM palmitoyl-CoA. On nonreducing polyacrylamide gel electrophoresis, the enzymatic activity was associated with a 234-kDa complex, and on sodium dodecyl sulfate polyacrylamide gel electrophoresis, the complex afforded 65- and 67-kDa protein bands. Incubation of microsomes with trypsin prior to enzyme extraction resulted in a 50% inactivation of the fatty acyltransferase and generation of 53- and 55-kDa protein bands, which also had affinity to Cibacron blue F3GA and were displaced from the column together with the active (intact) enzyme. We suggest that the fatty acyltransferase is an integral rough microsomal protein partially exposed to cytosol, which catalyzes the fatty acyl-CoA-protein reaction on the cytosolic site of the rough endoplasmic reticulum and that this enzyme is responsible for processing of the group of protein which are entering rough endoplasmic reticulum-Golgi secretory pathway.  相似文献   

9.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   

10.
As a first step in determining the molecular mechanism of membrane fusion stimulated by GTP in rough endoplasmic reticulum (RER), we have looked for GTP-binding proteins. Rough microsomes from rat liver were treated for the release of ribosomes, and the membrane proteins were separated by SDS/polyacrylamide-gel electrophoresis. The polypeptides were then blotted on to nitrocellulose sheets and incubated with [alpha-32P]GTP [Bhullar & Haslam (1987) Biochem. J. 245, 617-620]. A doublet of polypeptides (23 and 24 kDa) was detected in the presence of 2 microM-MgCl2. Binding of [alpha-32P]GTP was blocked by 1-5 mM-EDTA, 10-10,000 nM-GTP or 10 microM-GDP. Either guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta gamma-imido]triphosphate at 100 nM completely inhibited binding, but ATP, CTP or UTP at 10 mciroM did not. Pretreatment of microsomes by mild trypsin treatment (0.5-10 micrograms of trypsin/ml, concentrations known not to affect microsomal permeability) led to inhibition of [alpha-32P]GTP binding, suggesting a cytosolic membrane orientation for the GTP-binding proteins. Two-dimensional gel-electrophoretic analysis revealed the 23 and 24 kDa [alpha-32P]GTP-binding proteins to have similar acid isoelectric points. [alpha-32P]GTP binding occurred to similar proteins of rough microsomes from rat liver, rat prostate and dog pancreas, as well as to a 23 kDa protein of rough microsomes from frog liver, but occurred to distinctly different proteins in a rat liver plasma-membrane-enriched fraction. Thus [alpha-32P]GTP binding has been demonstrated to two low-molecular-mass (approx. 21 kDa) proteins in the rough endoplasmic reticulum of several varied cell types.  相似文献   

11.
Sequestration of pea reserve proteins by rough microsomes   总被引:1,自引:1,他引:0       下载免费PDF全文
Free polysomes, polysomes released from membranes, and rough microsomal vesicles isolated from developing cotyledons of Pisum sativum L. cv. Burpeeana were used to direct cell-free protein synthesis in a wheat germ system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the polypeptide products had molecular weights ranging from 12,000 to 74,000. Some of the polypeptides migrated during electrophoresis with the same mobility as polypeptides present in legumin and vicilin preparations. By the use of rabbit antibodies raised against pea reserve proteins it was established that polysomes released from membranes and rough microsomes directed the synthesis of polypeptides that were related to reserve proteins whereas free polysomes did not.  相似文献   

12.
Poly(A)+ RNA (polyadenylated RNA) isolated from membrane-bound and free polyribosomes was translated in reticulocyte lysates, and the products were analysed by two-dimensional gel electrophoresis. Several translation products were specific to membrane-bound polyribosomal mRNA, including polypeptides of 47kDa, 35kDa and 21 kDa, whereas others (e.g. of 37 kDa, 17 kDa and 14 kDa) were specific to free polyribosomal mRNA. Although many products were common to both mRNA species, cross-contamination could be ruled out on the basis of the presence of these and other specific products. The common products included a 68 kDa microtubule-associated protein, tubulin, actin, the brain form of creatine kinase, neuron-specific enolase and protein 14-3-3 and calmodulin, all of which were identified on the basis of two-dimensional gel and peptide analyses. The 35 kDa protein product of membrane-specific mRNA was co-translationally processed in vitro by microsomal membranes, resulting in its cleavage to 33 kDa (and partial glycosylation). The 33 kDa processed protein (but not the 35 kDa precursor) was integrated into both dog pancreas and rat brain microsomal membranes. The occurrence of the enzymes and calmodulin as products of membrane-bound polyribosomal mRNA is discussed in the light of their presence on rat brain synaptic plasma membranes [Lim, Hall, Leung, Mahadevan & Whatley (1983) J. Neurochem. 41, 1177-1182] and their existence in a specific component of axonal flow. It is suggested that some of these translation products of the rough endoplasmic reticulum may represent proteins destined for the plasma membrane. However, the identity and location of the 35 kDa membrane-specific product (or its processed form) still remain unestablished.  相似文献   

13.
A protein fraction which has a high affinity for polyribosomes was isolated from rough microsomal membranes of rat liver. The mode of polyribosome binding to this fraction (R-fraction) was studied by using CsCl equilibrium centrifugation and compared with that for stripped rough microsomal membranes. The following were found. (1) The polyribosome-binding cpacity of the R-fraction was heat-labile and sensitive to trypsin, and was suppressed by increasing KCl concentration and addition of 0.1 mM-aurintricarboxylic acid. (2) Of the four subfractions obtained by gel filtration of the R-fraction on a Sephadex G-200, only the R1-fraction, eluted at the void volume, showed a high affinity for polyribosomes. The polyribosome-binding capacity of the R1-fraction decreased with time on storage at 4 degrees C. (3) The R1-fraction contained three major proteins with mol. wts. 108,000, 99,000 and 65,000.  相似文献   

14.
1. The structural-protein component of microsomal membranes was isolated by three separate methods. Analysis by polyacrylamide-gel electrophoresis indicated that the microsomal structural component is made up of a heterogeneous group of proteins. These proteins were further characterized by their phospholipid-binding capacity. The electrophoretic patterns of microsomal structural proteins were found to differ significantly from those of mitochondrial structural proteins. 2. The reticulosomal fraction was also characterized by electrophoresis with reference to total microsomal proteins, microsomal structural proteins and ribosomal proteins. The reticulosomes gave an electrophoretic pattern significantly different from those of the other three preparations examined. It is suggested that reticulosomes consist largely of enzymic proteins of the endoplasmic reticulum.  相似文献   

15.
Sindbis virus 26S RNA has been translated in a cell-free protein-synthesizing system from rabbit reticulocytes. When the system was supplemented with EDTA-stripped dog pancreas microsomal membranes, the following results were obtained: (a) Complete translation of 26S RNA, resulting in the production, by endoproteolytic cleavage, of three polypeptides that are apparently identical to those forms of C, PE2, and E1 that are synthesized in vivo by infected host cells during a 3-min pulse with [35S]methionine. (b) Correct topological deposition of the three viral polypeptides--in vitro-synthesized PE2 and E1 forms are inserted into dog pancreas microsomal membranes in a orientation which, by the criterion of their limited (or total) inaccessibility to proteolytic probes, is indistinguishable from that of their counterparts in the rough endoplasmic recticulum of infected host cells; in vitro-synthesized C is not inserted into membranes and therefore is accessible to proteolytic enzymes, like its in vivo-synthesized counterpart. (c) Core glycosylation of in vitro-synthesized PE2 and E1 forms, as indicated by binding to concanavalin A Sepharose and subsequent elution by alpha-methylmannoside.  相似文献   

16.
Secretory granules and plasma membranes were isolated from rat parotid cells and characterized enzymatically and by electron microscopy. The proteins of the secretory granule membranes, the secretory granules and the plasma membranes were characterized by two-dimensional polyacrylamide gel electrophoresis and visualized by silver staining. The granule membrane contains 166 polypeptides of which only 26 are also present in the granule contents. The membrane proteins have isoelectric points between 4.75 and 6.45 and apparent molecular weights of 17 000 to 190 000 Daltons. The granule content proteins are surprisingly complex and contain 122 polypeptides with molecular weights of 11 000 to 138 000 and isoelectric points of 4.8 to 6.55. Thirteen of these peptides are present as major species. The plasma membrane contains 172 polypeptide species with molecular weights from 17 000 to 200 000 Daltons and isoelectric points of 5.0 to 6.8. Thirty-five of the plasma membrane proteins are also present in the secretory granule membranes indicating that the two membranes have some enzymatic or structural properties in common. Thus, secretory granule membranes and plasma membranes from parotid cells have a more complex polypeptide composition than has previously been shown for membranes of this type. The systems developed are suitable for the analysis of regulatory events such as protein phosphorylation, proteolytic processing, and other types of post-translational modifications that may be important to the secretory mechanism.  相似文献   

17.
《The Journal of cell biology》1984,99(6):2247-2253
A preparation of rat liver microsomes containing 70% of the total cellular endoplasmic reticulum (ER) membranes was subfractionated by isopycnic density centrifugation. Twelve subfractions of different ribosome content ranging in density from 1.06 to 1.29 were obtained and analyzed with respect to marker enzymes, RNA, and protein content, as well as the capacity of these membranes to bind 80S ribosomes in vitro. After removal of native polysomes from these microsomal subfractions by puromycin in a buffer of high ionic strength their capacity to rebind 80S ribosomes approached levels found in the corresponding native membranes before ribosome stripping. This indicates that in vitro rebinding of ribosomes occurs to the same sites occupied in the cell by membrane-bound polysomes. Microsomes in the microsomal subfractions were also tested for their capacity to effect the translocation of nascent secretory proteins into the microsomal lumen utilizing a rabbit reticulocyte translation system programmed with mRNA coding for the precursor of human placental lactogen. Membranes from microsomes with the higher isopycnic density and a high ribosome content showed the highest translocation activity, whereas membranes derived from smooth microsomes had only a very low translocation activity. These results indicate the membranes of the rough and smooth portions of the endoplasmic reticulum are functionally differentiated so that sites for ribosome binding and the translocation of nascent polypeptides are segregated to the rough domain of the organelle.  相似文献   

18.
Rat liver rough endoplasmic reticulum membranes (ER) contain two characteristic transmembrane glycoproteins which have been designated ribophorins I and II and are absent from smooth ER membranes. These proteins (MW 65,000 and 63,000 respectively) are related to the binding sites for ribosomes, as suggested by the following findings: (i) The ribophorin content of the rough ER membranes corresponds stoichiometrically to the number of bound ribosomes; (ii) ribophorins are quantitatively recovered with the bound polysomes after most other ER membrane proteins are dissolved with the nonionic detegent Kyro EOB; (iii) in intact rough microsomes ribophorins can be crosslinked chemically to the ribosomes and therefore are in close proximity to them. Treatment of rough microsomes with a low Triton X-100 concentration leads to the lateral displacement of ribosomes on the microsomal surface and to the formation of aggregates of bound ribosomes in areas of membranes which frequently invaginate into the microsomal lumen. Subfractionation of Triton-treated microsomes containing invaginations led to the recovery of smooth and “rough-inverted” vesicles. Ribophorins were present only in the latter fraction, indicating that both proteins are displaced together with the ribosome-binding capacity of rough and smooth microsomal membranes reconstituted after solubilization with detergents sugest that ribophorins are necessary for in vitro ribosome binding. Ribophorin-like proteins were found in rough microsomes obtained from secretory tissues of several animal species. The two proteins present in rat lacrimal gland microsomes have the same mobility as hepatocyte ribophorins and cross-react with antisera against them.  相似文献   

19.
Translation of poly(A)-containing RNA from the female fat body of Drosophila melanogaster in a rabbit reticulocyte cell-free system results in the synthesis of previtellogenin polypeptides (PVs) having higher apparent molecular weights (46,000 and 45,000) than the forms seen after an in vivo pulse labeling. However, when this RNA is translated in the presence of EDTA-stripped microsomal membranes from the dog pancreas, vitellogenin precursors are produced that, upon SDS- polyacrylamide gel electrophoresis, comigrate with the in vivo forms (apparent molecular weights, 45,000 and 44,000). These processed forms are sequestered within the microsomal lumen, as evidenced by their insensitivity to trypsin digestion. Neither processing nor sequestration occur posttranslationally. In addition, a microsomal membrane fraction derived from Drosophila embryos is able to cotranslationally process the PVs as well as a murine pre-light chain IgG. These observations support a signal-mediated mode of secretion in Drosophila, and suggest that signal sequence recognition and signal peptidase activities are conserved even between mammalian and insect systems.  相似文献   

20.
Rat liver microsomes were subfractionated by isopycnic centrifugation in sucrose gradient. The subfractions were assayed for translocation and proteolytic processing of nascent polypeptides in a rabbit reticulocyte lysate programmed with total RNA from human term placenta. The distribution of the translocation and processing of prelactogen through the gradient correlated with that of the microsomal RNA (ribosomes). Microsomes became inactive upon incubation with elastase, but the proteolyzed membranes recovered their activity by recombination with the soluble and active fragment of the docking protein (SRP-receptor) from dog pancreas. When this fragment was combined with the gradient subfractions, or with the subfractions inactivated by incubation with elastase, the density profile of the translocation activity remained similar to that of RNA. Thus, its distribution cannot be accounted for merely by that of the docking protein; another membrane constituent, still unidentified, is both necessary for translocation of polypeptides and restricted to the rough portions of the endosplamic reticulum. Signal peptidase was assayed in the absence of protein synthesis, by use of preformed prelactogen and detergent-disrupted microsomes. Its density distribution was also similar to that of RNA. Several components of the endosplamic reticulum now appear to be segregated within restricted areas on either side of the membrane, and to make up a biochemically distinct domain. We propose to call it the ribosomal domain in consideration of its contribution to protein biosynthesis by bound ribosomes. This domain probably accounts for a greater part of the membrane area at the cytoplasmic than at the luminal surface, as postulated earlier to explain how enzymes of the cytoplasmic surface are relatively less abundant in the rough microsomes than those of the luminal surface [Amar-Costesec A. & Beaufay H. (1981) J. Theor. Biol. 89, 217-230].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号