首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Understanding the effects of changing climate and long-term human activities on soil organic carbon (SOC) and the mediating roles of microorganisms is critical to maintain soil C stability in agricultural ecosystem. Here, we took samples from a long-term soil transplantation experiment, in which large transects of Mollisol soil in a cold temperate region were translocated to warm temperate and mid-subtropical regions to simulate different climate conditions, with a fertilization treatment on top. This study aimed to understand fertilization effect on SOC and the role of soil microorganisms featured after long-term community incubation in warm climates. After 12 years of soil transplantation, fertilization led to less reduction of SOC, in which aromatic C increased and the consumption of O-alkyl C and carbonyl C decreased. Soil live microbes were analyzed using propidium monoazide to remove DNAs from dead cells, and their network modulization explained 60.4% of variations in soil labile C. Single-cell Raman spectroscopy combined with D2O isotope labeling indicated a higher metabolic activity of live microbes to use easily degradable C after soil transplantation. Compared with non-fertilization, there was a significant decrease in soil α- and β-glucosidase and delay on microbial growth with fertilization in warmer climate. Moreover, fertilization significantly increased microbial necromass as indicated by amino sugar content, and its contribution to soil resistant C reached 22.3%. This study evidentially highlights the substantial contribution of soil microbial metabolism and necromass to refractory C of SOC with addition of nutrients in the long-term.Subject terms: Microbial ecology, Biodiversity  相似文献   

2.
Long‐term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data‐constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2‐pool model) and 11% (4‐pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2‐pool microbial model. The 4‐pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values.  相似文献   

3.
Microbial necromass is a large and persistent component of soil organic carbon (SOC), especially under croplands. The effects of cropland management on microbial necromass accumulation and its contribution to SOC have been measured in individual studies but have not yet been summarized on the global scale. We conducted a meta-analysis of 481-paired measurements from cropland soils to examine the management effects on microbial necromass and identify the optimal conditions for its accumulation. Nitrogen fertilization increased total microbial necromass C by 12%, cover crops by 14%, no or reduced tillage (NT/RT) by 20%, manure by 21%, and straw amendment by 21%. Microbial necromass accumulation was independent of biochar addition. NT/RT and straw amendment increased fungal necromass and its contribution to SOC more than bacterial necromass. Manure increased bacterial necromass higher than fungal, leading to decreased ratio of fungal-to-bacterial necromass. Greater microbial necromass increases after straw amendments were common under semi-arid and in cool climates in soils with pH <8, and were proportional to the amount of straw input. In contrast, NT/RT increased microbial necromass mainly under warm and humid climates. Manure application increased microbial necromass irrespective of soil properties and climate. Management effects were especially strong when applied during medium (3–10 years) to long (10+ years) periods to soils with larger initial SOC contents, but were absent in sandy soils. Close positive links between microbial biomass, necromass and SOC indicate the important role of stabilized microbial products for C accrual. Microbial necromass contribution to SOC increment (accumulation efficiency) under NT/RT, cover crops, manure and straw amendment ranged from 45% to 52%, which was 9%–16% larger than under N fertilization. In summary, long-term cropland management increases SOC by enhancing microbial necromass accumulation, and optimizing microbial necromass accumulation and its contribution to SOC sequestration requires site-specific management.  相似文献   

4.
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0–1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5–2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.  相似文献   

5.
Exogenous carbon turnover within soil food web is important in determining the trade-offs between soil organic carbon (SOC) storage and carbon emission. However, it remains largely unknown how soil food web influences carbon sequestration through mediating the dual roles of microbes as decomposers and contributors, hindering our ability to develop policies for soil carbon management. Here, we conducted a 13C-labeled straw experiment to demonstrate how soil food web regulated the residing microbes to influence the soil carbon transformation and stabilization process after 11 years of no-tillage. Our work demonstrated that soil fauna, as a “temporary storage container,” indirectly influenced the SOC transformation processes and mediated the SOC sequestration through feeding on soil microbes. Soil biota communities acted as both drivers of and contributors to SOC cycling, with 32.0% of exogenous carbon being stabilizing in the form of microbial necromass as “new” carbon. Additionally, the proportion of mineral-associated organic carbon and particulate organic carbon showed that the “renewal effect” driven by the soil food web promoted the SOC to be more stable. Our study clearly illustrated that soil food web regulated the turnover of exogenous carbon inputs by and mediated soil carbon sequestration through microbial necromass accumulation.  相似文献   

6.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   

7.
Despite the large contribution of rangeland and pasture to global soil organic carbon (SOC) stocks, there is considerable uncertainty about the impact of large herbivore grazing on SOC, especially for understudied subtropical grazing lands. It is well known that root system inputs are the source of most grassland SOC, but the impact of grazing on partitioning of carbon allocation to root tissue production compared to fine root exudation is unclear. Given that different forms of root C have differing implications for SOC synthesis and decomposition, this represents a significant gap in knowledge. Root exudates should contribute to SOC primarily after microbial assimilation, and thus promote microbial contributions to SOC based on stabilization of microbial necromass, whereas root litter deposition contributes directly as plant‐derived SOC following microbial decomposition. Here, we used in situ isotope pulse‐chase methodology paired with plant and soil sampling to link plant carbon allocation patterns with SOC pools in replicated long‐term grazing exclosures in subtropical pasture in Florida, USA. We quantified allocation of carbon to root tissue and measured root exudation across grazed and ungrazed plots and quantified lignin phenols to assess the relative contribution of microbial vs. plant products to total SOC. We found that grazing exclusion was associated with dramatically less overall belowground allocation, with lower root biomass, fine root exudates, and microbial biomass. Concurrently, grazed pasture contained greater total SOC, and a larger fraction of SOC that originated from plant tissue deposition, suggesting that higher root litter deposition under grazing promotes greater SOC. We conclude that grazing effects on SOC depend on root system biomass, a pattern that may generalize to other C4‐dominated grasslands, especially in the subtropics. Improved understanding of ecological factors underlying root system biomass may be the key to forecasting SOC and optimizing grazing management to enhance SOC accumulation.  相似文献   

8.
李强 《微生物学报》2022,62(6):2188-2197
在水-二氧化碳-碳酸盐岩-生物的相互作用下,岩溶碳循环活跃,在全球形成8.24×108 t C/a的岩溶碳汇,约占全球遗漏汇的29.4%,其中部分岩溶碳汇以土壤有机碳的形式固存,因此碱性土壤固碳是未来碳中和的主要途径。微生物作为土壤碳循环的重要驱动者,影响着土壤有机碳主要赋存形式即植物残体碳与微生物残体碳的动态变化。本文通过综述岩溶土壤有机碳库储量、岩溶土壤有机碳库的来源与构成、影响岩溶土壤有机碳库动态的微生物因素以及岩溶土壤有机碳库更新的微生物机制,探讨了微生物对岩溶土壤植物残体碳与微生物残体碳的影响,并提出亟待解决的关键科学问题。这为深入研究岩溶区土壤有机碳库分配、更新及其维持的微生物机制,深化对岩溶土壤碳循环及其微生物机理认识,进而为应对千分之四全球土壤增碳计划提供了参考。  相似文献   

9.
Plant- and microbially derived carbon (C) are the two major sources of soil organic matter (SOM), and their ratio impacts SOM composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOM along the soil profile are not well known. By leveraging nuclear magnetic resonance spectroscopy and biomarker analysis, we analyzed the plant and microbial C in three soil types using regional-scale sampling and combined these results with a meta-analysis. Topsoil (0–40 cm) was rich in carbohydrates and lignin (38%–50%), whereas subsoil (40–100 cm) contained more proteins and lipids (26%–60%). The proportion of plant C increases, while microbial C decreases with SOM content. The decrease rate of the ratio of the microbially derived C to plant-derived C (CM:P) with SOM content was 23%–30% faster in the topsoil than in the subsoil in the regional study and meta-analysis. The topsoil had high potential to stabilize plant-derived C through intensive microbial transformations and microbial necromass formation. Plant C input and mean annual soil temperature were the main factors defining CM:P in topsoil, whereas the fungi-to-bacteria ratio and clay content were the main factors influencing subsoil CM:P. Combining a regional study and meta-analysis, we highlighted the contribution of plant litter to microbial necromass to organic matter up to 1-m soil depth and elucidated the main factors regulating their long-term preservation.  相似文献   

10.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

11.
Rhizodeposition represents a relatively large carbon flow from a plant’s root into the surrounding soil. This carbon flow may have important implications for nitrogen mineralisation and carbon sequestration, but is still poorly understood. In this paper we use a simple compartment model of carbon flow in the rhizosphere to investigate the proposed benefits of rhizodeposition and the effect of microbial grazers. Model parameters were fitted to published, experimental data. Analysis of the model showed that dead organic matter (necromass) had a much longer time-scale than the other carbon pools (soluble, microbial and grazer carbon), which allowed an approximate, mathematical solution of the model to be derived. This solution shows that the level of necromass in the soil is an important factor in many processes of interest. The short-term carbon and nitrogen turnover increases with the level of necromass. Microbial grazers decrease carbon turnover at high levels of necromass, whilst at lower, and possibly more realistic, levels of necromass grazers increase turnover. However, the largest effect of grazers was to increase carbon turnover by 10%, suggesting that grazers are relatively unimportant in larger scale models of soil organic matter turnover. The marginal benefits of rhizodeposition increase with the level of necromass. The model suggests that the short-term benefits of rhizodeposition to a plant are marginal, but long-term benefits may still occur.  相似文献   

12.
Soil organic matter models are widely used to study soil organic carbon (SOC) dynamics. Here, we used the CENTURY model to simulate SOC in wheat-corn cropping systems at three long-term fertilization trials. Our study indicates that CENTURY can simulate fertilization effects on SOC dynamics under different climate and soil conditions. The normalized root mean square error is less than 15% for all the treatments. Soil carbon presents various changes under different fertilization management. Treatment with straw return would enhance SOC to a relatively stable level whereas chemical fertilization affects SOC differently across the three sites. After running CENTURY over the period of 1990–2050, the SOC levels are predicted to increase from 31.8 to 52.1 Mg ha−1 across the three sites. We estimate that the carbon sequestration potential between 1990 and 2050 would be 9.4–35.7 Mg ha−1 under the current high manure application at the three sites. Analysis of SOC in each carbon pool indicates that long-term fertilization enhances the slow pool proportion but decreases the passive pool proportion. Model results suggest that change in the slow carbon pool is the major driver of the overall trends in SOC stocks under long-term fertilization.  相似文献   

13.
Accurate prediction of future atmospheric CO2 concentrations is essential for evaluating climate change impacts on ecosystems and human societies. One major source of uncertainty in model predictions is the extent to which global warming will increase atmospheric CO2 concentrations through enhanced microbial decomposition of soil organic carbon. Recent advances in microbial ecology could help reduce this uncertainty, but current global models do not represent direct microbial control over decomposition. Instead, all of the coupled climate models reviewed in the most recent Intergovernmental Panel on Climate Change (IPCC) report assume that decomposition is a first-order decay process, proportional to the size of the soil carbon pool. Here we argue for the development of a new generation of models that link decomposition directly to the size and activity of microbial communities in coupled global models. This process begins with the formulation and validation of fine-scale models that capture fundamental microbial mechanisms without excessive mathematical complexity. These mechanistic models must then be scaled up through an aggregation process and validated at ecosystem to global scales prior to incorporation into global climate models (GCMs). Parameterizing microbial models at the global scale is challenging because some microbial properties such as in situ extracellular enzyme activities are very difficult to measure directly. New parameter fitting procedures may therefore be needed to infer the values of important microbial variables. Validating decomposition models at the global scale is also a challenge, and has not yet been accomplished with the land carbon models embedded in current GCMs. Fortunately new global datasets on soil carbon stocks and fluxes offer promising opportunities to validate both existing land carbon models and new microbial models. If challenges in scaling, parameterization, and validation can be overcome, a new generation of microbially-based decomposition models could substantially improve predictions of carbon–climate feedbacks in the Earth system. Development of new models structures would also reduce any bias due to the assumption of first-order decomposition across all of the models currently referenced in reports of the IPCC.  相似文献   

14.
杉木凋落物对土壤有机碳分解及微生物生物量碳的影响   总被引:2,自引:2,他引:0  
利用13C稳定同位素示踪技术,研究了杉木凋落物对杉木人工林表层(0~5 cm)和深层(40~45 cm)土壤有机碳分解、微生物生物量碳和可溶性碳动态的影响.结果表明: 杉木人工林中深层土壤有机碳分解速率显著低于表层土壤,但其激发效应却显著高于表层土壤.杉木凋落物添加使土壤总微生物生物量碳和源于原有土壤的微生物生物量碳均显著增加,但对土壤可溶性碳没有显著影响.深层土壤被翻到林地表层,可能加速杉木人工林土壤中碳的损失.  相似文献   

15.
Microbial‐derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N production, turnover, and stabilization, we incubated 15N‐labeled bacterial and fungal necromass under optimum moisture conditions at 10°C, 15°C, and 25°C. We developed a new 15N tracing model to calculate the production and mineralization rates of necromass N. Our results showed that bacterial and fungal necromass N had similar mineralization rates, despite their contrasting chemistry. Most bacterial and fungal necromass 15N was recovered in the mineral‐associated organic matter fraction through microbial anabolism, suggesting that mineral association plays an important role in stabilizing necromass N in soil, independently of necromass chemistry. Elevated temperature significantly increased the accumulation of necromass N in soil, due to the relatively higher microbial turnover and production of necromass N with increasing temperature than the increases in microbial necromass N mineralization. In conclusion, we found elevated temperature may increase the contribution of microbial necromass N to mineral‐stabilized soil organic N.  相似文献   

16.
The role and significance of physically protected soil organic carbon (SOC) in regulating SOC dynamics remains unclear. Here, we developed a simple theoretical model (DP model) considering dynamic physical protection to simulate the dynamics of protected (Cp) and unprotected SOC (Cu), and compared the modelling results with a conventional two‐pool (fast vs. slow) model considering chemical recalcitrance. The two models were first constrained using extensive SOC data collected from soils with and without fresh carbon (C) inputs under incubation conditions, and then applied to project SOC dynamics and explore mechanisms underpinning the priming effect (PE). Overall, both models explained more than 99% of the variances in observed SOC dynamics. The DP model predicted that Cp accounted for the majority of total SOC. As decomposition proceeds, the proportion of Cp reached >90% and kept relatively constant. Although the similar performance of the two models in simulating observed total SOC dynamics, their predictions of future SOC dynamics were divergent, challenging the predictions of widely used pool‐based models. The DP model also suggested alternative mechanisms underpinning the priming of SOC decomposition by fresh C inputs. The two‐pool model suggested that the PE was caused by the stimulated decomposition rates, especially for the slow recalcitrant pool, while the DP model suggested that the PE might be the combined consequence of stimulated Cu decomposition, the liberation of Cp to decomposition and the inhibition of the protection of unprotected SOC. The model‐data integration provided a new explanation for the PE, highlighting the importance of liberation of initially physically protected SOC to decomposition by new C inputs. Our model‐data integration demonstrated the importance of simulating physical protection processes for reliable SOC predictions, and provided new insights into mechanistic understanding of the priming effect.  相似文献   

17.
It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region.  相似文献   

18.
植物凋落物碳输入显著影响陆地生态系统土壤CO2排放和有机碳(SOC)形成,然而,针对不同质地土壤添加不同化学结构外源碳去向依然不清楚。本研究将13C标记的葡萄糖、淀粉和纤维素添加至红壤和风沙土,比较2种质地土壤添加不同化学结构外源碳在土壤释放的CO2、SOC、可溶性有机碳(DOC)和微生物生物量碳(MBC)库的净累积量、回收率及贡献比例上的差异。结果表明: 添加外源有机碳显著提高了CO2、SOC、DOC和MBC的δ13C值,且随着外源有机碳化学结构复杂性的增加,CO2的δ13C峰值依次延迟出现;外源有机碳种类、土壤类型和培养时间均显著改变外源碳去向及其在各碳库的贡献比例;在风沙土中,外源有机碳更多被矿化为CO2,且CO2库的外源碳净累积量和回收率大小依次为葡萄糖>淀粉>纤维素;红壤添加外源碳转变为SOC的累积量和回收率显著高于风沙土,且红壤SOC库的外源碳净累积量和回收率大小顺序也为葡萄糖>淀粉>纤维素。可见,外源有机碳化学结构和土壤质地共同调控外源碳去向及累积贡献。  相似文献   

19.
王浩  杨钰  习丹  丘清燕  胡亚林 《生态学报》2020,40(24):9184-9194
土壤有机碳库是陆地生态系统中最大的碳储量库,其微小的变化也能使大气中CO2浓度发生巨大的改变,植物来源碳的输入能通过激发效应促进或抑制土壤有机碳(SOC)的分解,对SOC的动态平衡产生影响。以武夷山三个林型(阔叶林、马尾松林、针阔混交林)土壤为研究对象,通过向土壤中添加不同量的13C标记葡萄糖(0、100、200、400 mg C/kg)研究易分解有机碳输入量对不同林型土壤激发效应的影响,并在此基础上探讨易分解有机碳输入量对土壤激发效应影响的作用机理。结果表明,葡萄糖输入对土壤激发效应的影响与葡萄糖输入量和林型有关。葡萄糖的输入均抑制了三个林型SOC的分解(即,呈现负的激发效应)。阔叶林土壤和针阔混交林土壤激效应强度随着葡萄糖输入量的增加而增加,而马尾松林土壤的激发效应强度对葡萄糖输入量的响应并不明显。然而在马尾松林土壤中由葡萄糖所引起的激发效应强度显著高于其他两种林型土壤。研究结果表明,易分解有机碳的输入可以抑制SOC的矿化,形成负激发效应,阔叶林土壤的激发效应强度与土壤可利用氮、葡萄糖添加量与微生物碳量比值有关,而针阔混交林与马尾松林土壤的激发效应强度分别与土壤中的放线菌和真菌有关。  相似文献   

20.
Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate‐carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long‐term field incubation experiment with deep soil collars (0–70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi‐pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号