首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 172 毫秒
1.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are major enzymes that function in Phase II detoxification reactions by catalyzing the conjugation of reduced glutathione through cysteine thiol. In this study, we cloned and sequenced four GST genes from the monogonont rotifer Brachionus koreanus. The domain regions of four Bk-GSTs showed a high similarity to those of other species. In addition, to evaluate the potential of GST genes as an early warning signal for oxidative stress, we exposed sublethal concentrations of copper (Cu) to B. koreanus and measured glutathione (GSH) contents and several antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx; EC 1.11.1.9), and glutathione reductase (GR; EC 1.8.1.7). The reactive oxygen species (ROS) at 12 h and 24 h after copper exposure increased significantly. GSH contents however did not increase significantly and even it decreased at 0.24 mg/L at 12 h. The activities of several antioxidant enzymes, particularly GPx and GR, showed a dramatic increase in 0.24 mg/L of CuCl2. Messenger RNAs of each Bk-GST showed different patterns of modulations according to GST types, and particularly, Bk-GST-omega, Bk-GST-sigma, and Bk-GST zeta genes were highly sensitive to Cu. These results indicate that Bk-GSTs, functioning as one of the enzymatic defense mechanisms particularly in the early stage of oxidative stress response, were induced by Cu exposure. This also suggests that these genes and related enzymes have a potential as biomarkers for a more sensitive initial stress response.  相似文献   

2.
It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.  相似文献   

3.
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.  相似文献   

4.
5.
6.
7.
Two related perciform fish species of the subfamily Monotaxinae (Sparoidea: Lethrinidae) Gymnocranius superciliosus sp. nov. and Gymnocranius satoi sp. nov. are described from specimens and tissue samples from the Coral Sea and adjacent regions. G. superciliosus sp. nov. is distinct from all other known Gymnocranius spp. by the following combination of characters: body elongated (depth 2.7–3.1 in standard length), caudal fin moderately forked with a subtle middle notch, its lobes slightly convex inside, distinctive blackish eyebrow, snout and cheek with blue speckles, and dorsal, pectoral, anal and caudal fins reddish. G. satoi sp. nov. is the red-finned ‘Gymnocranius sp.’ depicted in previous taxonomic revisions. While colour patterns are similar between the two species, G. satoi sp. nov. is distinct from G. superciliosus sp. nov. by the ratio of standard length to body depth (2.4–2.5 vs. 2.7–3.1) and by the shape of the caudal fin, which is more shallowly forked, its lobes convex inside and their extremities rounded. The two species are genetically distinct from each other and they are genetically distinct from G. elongatus, G. euanus, G. grandoculis, and G. oblongus sampled from the Coral Sea and adjacent regions.  相似文献   

8.
Alcohol consumption by women during pregnancy often induces fetal alcohol spectrum disorder (FASD) in children who have serious central nervous system (CNS), cardiovascular, and craniofacial defects. Prevention of FASD, other than women abstaining from alcohol drinking during pregnancy, is not known. A limitation of the use of synthetic anti-alcoholic drugs during pregnancy led us to investigate herbal products. In particular, many plants including Asian ginseng (Panax ginseng) have therapeutic potential for the treatment of alcoholism. We used Japanese ricefish (medaka) (Oryzias latipes), an animal model of FASD, for identifying herbal medicines that can attenuate ethanol toxicity. Fertilized eggs in standard laboratory conditions were exposed to ginseng (PG) root extract (0–2 mg/mL) either 0–2 (group A) or 1–3 (group B) day post fertilization (dpf) followed by maintenance in a clean hatching solution. The calculated IC50 as determined 10 dpf in A and B groups were 355.3 ± 1.12 and 679.7 ± 1.6 μg/mL, respectively. Simultaneous exposure of embryos in sub-lethal concentrations of PG (50–200 μg/mL) and ethanol (300 mM) for 48 h disrupted vessel circulation and enhanced mortality. However, PG (100 μg/mL) may partially protect trabecular cartilage (TC) deformities in the neurocranium in B group embryos induced by ethanol (300 mM). To understand the mechanism, embryonic ethanol concentration was measured at 2 dpf and adh5, adh8, aldh2, aldh9a, catalase, GST, and GR mRNAs were analyzed at 6 dpf. It was observed that although ethanol is able to reduce adh8 and GST mRNA contents, the simultaneous addition of PG was unable to alter ethanol level as well as mRNA contents in these embryos. Therefore, antagonistic effects of PG on ethanol toxicity are mediated by a mechanism which is different from those regulating ethanol metabolism and oxidative stress.  相似文献   

9.
Mutator (Mu) is by far the most mutagenic plant transposon. The high frequency of transposition and the tendency to insert into low copy sequences for such transposon have made it the primary means by which genes are mutagenized in maize (Zea mays L.). Mus like elements (MULEs) are widespread among angiosperms and multiple-diverged functional variants can be present in a single genome. MULEs often capture genetic sequences. These Pack-MuLEs can mobilize thousands of gene fragments, which may have had a significant impact on host genome evolution. There is also evidence that MULEs can move between reproductively isolated species. Here we present an overview of the discovery, features and utility of Mu transposon. Classification of Mu elements and future directions of related research are also discussed. Understanding Mu will help us elucidate the dynamic genome.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号