首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated stress on psychiatric disorders.  相似文献   

2.
Two stress imposing systems were used: a rapid stress developed by allowing excised leaves to loose water by transpiration, and a slow stress developed by withholding watering of potted plants. Carboxylating enzymes reacted differently on both types of stress. Rapid stress increased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation, but both activities (initial and total) showed little variation with stress. Under slow stress the activation did not change, although both activities decreased much under stress. Phosphoenolpyruvate carboxylase (PEPC) showed a deep decrease of activity under rapid stress, nevertheless, a certain recovery was found under extreme stress. On the other hand, under slow stress the activity of PEPC showed a linear increase with decreasing relative water content. The ratio between physiological and maximal activity increased slightly under both types of stress. The activity of malic enzyme did not change under rapid stress, and decreased linearly under slow stress.  相似文献   

3.
逆境胁迫下作物基因表达更替的研究进展   总被引:4,自引:0,他引:4  
本文综述了高等植物在厌氧、热激,盐分胁迫,养分胁迫,紫外辐射等各种逆境条件下,基因表达更替的一系列过程,提出基因表达变化对作物适应逆境条件的意义,并对今后的研究作了展望。  相似文献   

4.
Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized geometries, in most cases measured by in-vivo MRI. The geometry is therefore not stress-free. The aim of this study is to identify the effect of neglecting the initial stress state on the plaque stress distribution. Fifty 2D histological sections (7 patients, 9 diseased coronary artery segments), perfusion fixed at 100 mmHg, were segmented and finite element models were created. The Backward Incremental method was applied to determine the initial stress state and the zero-pressure state. Peak plaque and cap stresses were compared with and without initial stress. The effect of initial stress on the peak stress was related to the minimum cap thickness, maximum necrotic core thickness, and necrotic core angle. When accounting for initial stress, the general relations between geometrical features and peak cap stress remain intact. However, on a patient-specific basis, accounting for initial stress has a different effect on the absolute cap stress for each plaque. Incorporating initial stress may therefore improve the accuracy of future stress based rupture risk analyses for atherosclerotic plaques.  相似文献   

5.
Acclimation of microorganisms to environmental stress is closely related to the expression of various genes. We report here that salt stress and hyperosmotic stress have different effects on the cytoplasmic volume and gene expression in Synechocystis sp. PCC 6803. DNA microarray analysis indicated that salt stress strongly induced the genes for some ribosomal proteins. Hyperosmotic stress strongly induced the genes for 3-ketoacyl-acyl carrier protein reductase and rare lipoprotein A. Genes whose expression was induced both by salt stress and by hyperosmotic stress included those for heat-shock proteins and the enzymes for the synthesis of glucosylglycerol. We also found that each kind of stress induced a number of genes for proteins of unknown function. Our findings suggest that Synechocystis recognizes salt stress and hyperosmotic stress as different stimuli, although mechanisms common to the responses to each form of stress might also contribute to gene expression.  相似文献   

6.
Many of the deleterious effects of chronic stress in vertebrates are caused by the long-term elevation of stress hormones. These negative effects are thought to be unavoidable by-products of sustained activation of the stress response, but the details remain unclear. A comparative perspective may help in understanding chronic stress. We exposed crickets (Gryllus texensis) to a mock predator. A single exposure to a mock predator induced a transient increase in the hemolymph (blood) concentration of the insect stress neurohormone, octopamine. Repeated exposure to the mock predator increased basal levels of octopamine, similar to the effects of chronic stress on the basal levels of vertebrate stress hormones. This study is the first to report an increase in the basal levels of an invertebrate stress hormone in response to repeated flight-or-fight stress. Chronic stress reduced weight gain, and decreased feeding and enhanced weight loss after food deprivation in adult female crickets. However, chronic stress also increased the tendency of crickets to produce sustained flight. Therefore, this study supports the hypothesis that increasing basal levels of stress hormones may be a phylogenetically common response to chronically stressful conditions. It also demonstrates that chronic stress has both positive and negative effects in insects.  相似文献   

7.
The general stress regulon of Bacillus subtilis comprises approximately 200 genes and is under the control of the alternative sigma factor σ(B). The activation of σ(B) occurs in response to multiple physical stress stimuli as well as energy starvation conditions. The expression of the general stress proteins provides growing and stationary nonsporulating vegetative cells with nonspecific and broad stress resistance. A previous comprehensive phenotype screening analysis of 94 general stress gene mutants in response to severe growth-inhibiting stress stimuli, including ethanol, NaCl, heat, and cold, indicated that secondary oxidative stress may be a common component of severe physical stress. Here we tested the individual contributions of the same set of 94 mutants to the development of resistance against exposure to the superoxide-generating agent paraquat and hydrogen peroxide (H(2)O(2)). In fact, 62 mutants displayed significantly decreased survival rates in response to paraquat and/or H(2)O(2) stress compared to the wild type at a confidence level of an α value of ≤ 0.01. Thus, we were able to assign 47 general stress genes to survival against superoxide, 6 genes to protection from H(2)O(2) stress, and 9 genes to the survival against both. Furthermore, we show that a considerable overlap exists between the phenotype clusters previously assumed to be involved in oxidative stress management and the actual group of oxidative-stress-sensitive mutants. Our data provide information that many general stress proteins with still unknown functions are implicated in oxidative stress resistance and further support the notion that different severe physical stress stimuli elicit a common secondary oxidative stress.  相似文献   

8.
9.
10.
11.
甘薯愈伤组织对干旱胁迫和盐胁迫的生理反应对比   总被引:15,自引:3,他引:12  
王兰兰  张立军  陈贵  李雪梅 《生态学杂志》2006,25(12):1508-1514
研究干旱胁迫和盐胁迫对“芦选一号”。日‘薯愈伤组织可溶性蛋白、可溶性糖、脯氨酸含量、SOD活性等的影响,从而在细胞水平上探讨甘薯抵御渗透胁迫的生理机制。并分析甘薯细胞对干旱处理(PEG-6000)和盐处理(NaCl)的反应差异。结果表明,可溶性蛋白质含量在干旱胁迫下缓慢升高,在轻度和中度盐胁迫的生长前期和中期有较大幅度的上升。但后期下降,表明短时间盐胁迫下,Na^+可能促进可溶性蛋白的合成;MDA在重度干旱胁迫下的含量显著低于重度盐胁迫,而SOD活性显著高于盐胁迫。表明在盐胁迫下细胞膜透性增加的主要原网是膜脂过氧化作用。干旱处理则是PEG-6000脱水的直接结果;重度干旱胁迫下,可溶性糖含量在短期内迅速升高,然后下降,而脯氨酸含量则在胁迫中后期迅速上升。脯氨酸可能有补偿可溶性糖含量降低的作用。  相似文献   

12.
Cellular heat stress results in elevated heat-shock protein (HSP) synthesis and in thermotolerance development. Recently, we demonstrated that protein glycosylation is also an integral part of the stress response with the identification of two major stress glycoproteins, GP50, associated with thermotolerance, and P-SG67, the “prompt” stress glycoprotein induced immediately during acute heat stress. In the present study, we characterized the subcellular location and redistribution of these proteins during the cellular injury and recovery phase. In unheated and heated CHO cells, both stress glycoproteins were present in each subcellular fraction isolated by differential centrifugation. However, the subcellular redistribution in the course of cellular recovery after heat stress was specific for each stress glycoprotein. GP50 was present in all subcellular fractions before heat stress, but showed relatively little redistribution after heat stress. By 24 h of recovery following stress, GP50 showed partial depletion from lysosomes and microsomes, and was mainly present in the mitochondria. Glycosylated P-SG67 was redistributed in a more complex fashion. It was seen predominantly in the lysosomes and microsomes immediately following heat-stress, but after 6 h of recovery following heat stress, it largely disappeared from the microsomes and was present mainly in the cytosol. By 24 h of recovery following heat stress, it was found predominantly in the nucleus-rich fraction and mitochondria. The localization of GP50 and P-SG67 by subcellular fractionation is consistent with immunolocalization studies and contrasts with the translocation of HSP70 after heat stress from cytosol to nuclei and nucleoli. These results reflect a characteristic distribution for each stress glycoprotein; their presence in virtually all subcellular fractions suggests multifunctional roles for the various stress glycoproteins in the cellular heat stress response. J. Cell. Biochem. 66:98–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Summary Ten seedlings each of Eucalyptus kitsoniana Maiden and Eucalyptus globulus Labill. were subjected to two levels of water stress and two levels of nutrient stress (macro and micro-nutrients) in a greenhouse for 3 weeks. The objectives were to determine the degree to which seedlings show differences in sap chemistry, photosynthesis and transpiration that relate to the environments in which these two species live. Whole plants were then extracted for xylem sap using a pressure chamber and the sap was analyzed for 14 elements using an inductively coupled plasma spectrometer and a nitrometer. For E. kitsoniana water and nutrient stress, applied separately or in combination, significantly reduced leaf conductance, transpiration, photosynthesis and midday water potential. Nutrient stress alone had less effect than water stress on most functions measured. Water stress alone reduced the root/shoot ratio; the combination of water and nutrient stress increased the root/shoot ratio, primarily because of reduced shoot weight. In E. kitsoniana, water stress alone or in combination with nutrient stress increased the xylem sap concentrations of B and Si. Multi-nutrient stress alone, or in combination with water stress, significantly decreased sap Zn and K. For this species, sap N was decreased by nutrient stress, but increased by water stress. E. globulus had significantly lower transpiration rates and less root mass than E. kitsoniana. Slightly lower leaf conductance and photosynthesis were not significant in E. globulus compared to E. kitsoniana. Water and nutrient stress reduced conductance, transpiration (except for nutrient stress) and photosynthesis, and the effects of water stress on E. globulus were greater than the effects of nutrient stress. Midday water potential was reduced by water stress. Water or nutrient stress alone did not alter seedling root/shoot ratio, but the combination of water and nutrient stress significantly increased the root/shoot ratio for both species. For E. globulus, sap concentrations of Mn, Na, Si and K were increased by water stress (alone or in combination with nutrient stress). Sap N increased with water stress or combined stresses, but decreased under nutrient stress alone. When the two species were compared, E. globulus generally had lower or similar nutrient concentrations in the sap, with Ca, Mg, Mn and P significantly lower than in E. kitsoniana. Seedlings of these two species show strong site adaptations to water and nutrient availability.  相似文献   

14.
Fluid shear stress and mechanical wall stress may play a role in the formation of early atherosclerotic lesions, but these quantities are difficult to measure in vivo. Our objective was to quantify these parameters in normal subjects in a clinical setting, and to define regions of low wall shear stress and high mechanical stress. The right carotid bifurcations of five healthy male volunteers were investigated using a novel non-invasive technique which integrates magnetic resonance angiography, ultrasonography, tonometry and state-of-the-art computational fluid dynamics and solid mechanics models. Significant inter-subject variations in patterns as well as magnitude of wall shear stress and mechanical stress were found. In spite of individual variabilities, this study revealed that some regions of the artery wall are exposed simultaneously to low wall shear stress and high mechanical stress and that these regions correspond to areas where atherosclerotic plaque develops. The coexistence of regions of low wall shear stress and high tensile stress may be an important determinant of the formation of atheroma in human arteries.  相似文献   

15.
16.
干旱胁迫对降香黄檀幼苗光合生理特性的影响   总被引:2,自引:0,他引:2  
采用温室盆栽方法,设置对照(CK)、轻度(LS)、中度(MS)和重度(HS)干旱胁迫4个水分条件,研究不同水分条件对降香黄檀幼苗光合和生理特性的影响。结果表明:(1)随着干旱胁迫程度增加,降香黄檀幼苗叶片叶绿素总含量总体呈现出下降趋势。(2)降香黄檀幼苗叶片净光合速率、气孔导度、胞间CO2浓度和蒸腾速率随着干旱胁迫强度增加均呈现出先增加后降低趋势,且MS和HS处理下的气孔导度和胞间CO2浓度同时降低,此时幼苗光合能力的下降主要受气孔因素限制。(3)随着干旱胁迫强度的增加,降香黄檀幼苗叶片细胞膜相对透性、丙二醛含量、游离脯氨酸含量和POD活性均呈现出增加趋势,而同期SOD和CAT活性呈现出先升高后降低趋势。可见,降香黄檀幼苗在轻度干旱胁迫下可通过增加叶片保护酶活性来清除活性氧对其组织造成的伤害,但胁迫超过一定程度后保护酶活性下降,表明降香黄檀幼苗的耐旱能力有限。  相似文献   

17.
The review considers recent data on stress granules, which are dense RNP-containing cytoplasmic bodies that arise under stress conditions, e.g., in heat shock, UV irradiation, energy depletion, and oxidative stress. There is evidence that stress granules accumulate incomplete initiation complexes containing mRNA associated with proteins, small ribosomal subunits, and some translation initiation factors, and that stress granules are formed when cells are depleted of the ternary complex (eIF2-tRNAMet-GTP), in particular, upon eIF2A phosphorylation or a decrease in GTP. Large ribosomal subunits and the ternary complex are absent from stress granules. The structural basis of stress granules is known. It is probable, however, that RNA-binding protein TIA-1, which normally occurs in the nucleus, forms prion-like aggregates that serve as scaffolds for other components of stress granules. The cytoskeleton facilitates the accumulation of stress granule components in local cytoplasmic sites. Studies of the formation and composition of stress granules are important for a better understanding of the regulation of translation initiation in vivo and the mechanisms of the cell response to stress factors.  相似文献   

18.
《Hormones and behavior》2012,61(5):478-483
Many of the deleterious effects of chronic stress in vertebrates are caused by the long-term elevation of stress hormones. These negative effects are thought to be unavoidable by-products of sustained activation of the stress response, but the details remain unclear. A comparative perspective may help in understanding chronic stress. We exposed crickets (Gryllus texensis) to a mock predator. A single exposure to a mock predator induced a transient increase in the hemolymph (blood) concentration of the insect stress neurohormone, octopamine. Repeated exposure to the mock predator increased basal levels of octopamine, similar to the effects of chronic stress on the basal levels of vertebrate stress hormones. This study is the first to report an increase in the basal levels of an invertebrate stress hormone in response to repeated flight-or-fight stress. Chronic stress reduced weight gain, and decreased feeding and enhanced weight loss after food deprivation in adult female crickets. However, chronic stress also increased the tendency of crickets to produce sustained flight. Therefore, this study supports the hypothesis that increasing basal levels of stress hormones may be a phylogenetically common response to chronically stressful conditions. It also demonstrates that chronic stress has both positive and negative effects in insects.  相似文献   

19.
Abscisic Acid and Abiotic Stress Signaling   总被引:1,自引:0,他引:1  
  相似文献   

20.
Shear stress and strain lead to neurodegeneration in vivo during head injury, glaucoma, and certain repetitive motion disorders. In vitro, shear stress and strain have been shown to lead to cell injury in a number of models using neurons and neuron-like cells. In the present study we examined the relationship between shear stress, strain, and the extent of cell injury in a cyclic shear stress induced model of cell injury using differentiated SH-SY5Y (human neuroblastoma) cells. Shear stress led to cell strain that increased with increasing stress and diminished upon cessation of shear. Strain rate during cyclic application of shear stress increased by over an order of magnitude from the first to all subsequent cycles, suggesting that the cell and/or its polymer network became more elastic upon cyclic shear stress application. To support this conclusion we measured the degree of cytoskeletal polymerization before and after exposure of cells to cyclic shear stress and found that the fraction of polymerized tubulin in the cell relative to total tubulin decreased by a factor of 2 after six cycles of shear stress. The extent of injury, as indicated by the fraction of cells with fragmented DNA, was three times higher for cyclic shear stress than for steady shear stress and may be related to the change in strain rate and/or cytoskeletal reorganization associated with cyclic stress. These findings may aid in understanding the mechanism by which neurons and neuron-like cells respond to cyclic shear stress and strain and lead to new treatments for disease or injury arising from the exposure of neurons to abnormal cyclic or repetitive stress and strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号