首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Head blight caused by Fusarium graminearum is an important disease of wheat and barley. Its genome contains chromosomal regions with higher genetic variation and enriched for genes expressed in planta, suggesting a role of chromatin modification in the regulation of infection-related genes. In a previous study, the FTL1 gene was characterized as a novel virulence factor in the head blight fungus. FTL1 is homologous to yeast SIF2, which is a component of the Set3 complex. Many members of the yeast Set3 complex, including Hos2 histone deacetylase (HDAC), are conserved in F. graminearum. In this study, we characterized the HDF1 gene that is orthologous to HOS2. HDF1 physically interacted with FTL1 in yeast two-hybrid assays. Deletion of HDF1 resulted in a significant reduction in virulence and deoxynivalenol (DON) production. The Δhdf1 mutant failed to spread from the inoculation site to other parts of wheat heads or corn stalks. It was defective in sexual reproduction and significantly reduced in conidiation. Expression of HDF1 was highest in conidia in comparison with germlings and hyphae. Deletion of HDF1 also resulted in a 60% reduction in HDAC activity. Microarray analysis revealed that 149 and 253 genes were down- and upregulated, respectively, over fivefold in the Δhdf1 mutant. Consistent with upregulation of putative catalase and peroxidase genes, the Δhdf1 mutant was more tolerant to H(2)O(2) than the wild type. Deletion of the other two class II HDAC genes had no obvious effect on vegetative growth and resulted in only a minor reduction in conidiation and virulence in the Δhdf2 mutant. Overall, our results indicate that HDF1 is the major class II HDAC gene in F. graminearum. It may interact with FTL1 and function as a component in a well-conserved HDAC complex in the regulation of conidiation, DON production, and pathogenesis.  相似文献   

2.
3.
Jiang J  Yun Y  Yang Q  Shim WB  Wang Z  Ma Z 《PloS one》2011,6(9):e25311
Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.  相似文献   

4.
5.
Kim KS  Feild E  King N  Yaoi T  Kustu S  Inwood W 《Genetics》2005,170(2):631-644
Evidence in several microorganisms indicates that Amt proteins are gas channels for NH(3) and CH(3)NH(2), and this has been confirmed structurally. Chlamydomonas reinhardtii has at least four AMT genes, the most reported for a microorganism. Under nitrogen-limiting conditions all AMT genes are transcribed and Chlamydomonas is sensitive to methylammonium toxicity. All 16 spontaneous methylammonium-resistant mutants that we analyzed had defects in accumulation of [(14)C]methylammonium. Genetic crosses indicated that 12 had lesions in a single locus, whereas two each had lesions in other loci. Lesions in different loci were correlated with different degrees of defect in [(14)C]methylammonium uptake. One mutant in the largest class had an insert in the AMT4 gene, and the insert cosegregated with methylammonium resistance in genetic crosses. The other 11 strains in this class also had amt4 lesions, which we characterized at the molecular level. Properties of the amt4 mutants were clearly different from those of rh1 RNAi lines. They indicated that the physiological substrates for Amt and Rh proteins, the only two members of their protein superfamily, are NH(3) and CO(2), respectively.  相似文献   

6.
RAS2 regulates growth and pathogenesis in Fusarium graminearum   总被引:1,自引:0,他引:1  
Fusarium graminearum is a ubiquitous pathogen of cereal crops, including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains frequently are contaminated with harmful mycotoxins such as deoxynivalenol (DON). In this study, we explored the role of Ras GTPases in pathogenesis. The genome of F. graminearum contains two putative Ras GTPase-encoding genes. The two genes (RAS1 and RAS2) showed different patterns of expression under different conditions of nutrient availability and in various mutant backgrounds. RAS2 was dispensable for survival but, when disrupted, caused a variety of morphological defects, including slower growth on solid media, delayed spore germination, and significant reductions in virulence on wheat heads and maize silks. Intracellular cAMP levels were not affected by deletion of RAS2 and exogenous treatment of the ras2 mutant with cAMP did not affect phenotypic abnormalities, thus indicating that RAS2 plays a minor or no role in cAMP signaling. However, phosphorylation of the mitogen-activated protein (MAP) kinase Gpmk1 and expression of a secreted lipase (FGL1) required for infection were reduced significantly in the ras2 mutant. Based on these observations, we hypothesize that RAS2 regulates growth and virulence in F. graminearum by regulating the Gpmk1 MAP kinase pathway.  相似文献   

7.
8.
Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity.  相似文献   

9.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   

10.
Guo J  Dai X  Xu JR  Wang Y  Bai P  Liu F  Duan Y  Zhang H  Huang L  Kang Z 《PloS one》2011,6(7):e21895
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.  相似文献   

11.
12.
《Fungal biology》2020,124(11):969-980
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.  相似文献   

13.
The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum ATG8 whose first 116 amino acids before the predicted ATG4 cleavage site are 100% identical to Podospora anserina ATG8. We generated a ΔFgatg8 mutant by gene replacement and showed that this cannot form autophagic compartments. The strain forms no perithecia, has reduced conidia production and the aerial mycelium collapses after a few days in culture. The collapsing aerial mycelium contains lipid droplets indicative of nitrogen starvation and/or an inability to use storage lipids. The capacity to use carbon/energy stored in lipid droplets after a shift from carbon rich conditions to carbon starvation is severely inhibited in the ΔFgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the ΔFgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type. The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in ΔFgatg8 fully restores the WT phenotype. The results showed that autophagy plays a pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios.  相似文献   

14.
Root development is strongly affected by the plant's nutritional status and the external availability of nutrients. Employing split-root systems, we show here that local ammonium supply to Arabidopsis thaliana plants increases lateral root initiation and higher-order lateral root branching, whereas the elongation of lateral roots is stimulated mainly by nitrate. Ammonium-stimulated lateral root number or density decreased after ammonium or Gln supply to a separate root fraction and did not correlate with cumulative uptake of (15)N-labeled ammonium, suggesting that lateral root branching was not purely due to a nutritional effect but most likely is a response to a sensing event. Ammonium-induced lateral root branching was almost absent in a quadruple AMMONIUM TRANSPORTER (qko, the amt1;1 amt1;2 amt1;3 amt2;1 mutant) insertion line and significantly lower in the amt1;3-1 mutant than in the wild type. Reconstitution of AMT1;3 expression in the amt1;3-1 or in the qko background restored higher-order lateral root development. By contrast, AMT1;1, which shares similar transport properties with AMT1;3, did not confer significant higher-order lateral root proliferation. These results show that ammonium is complementary to nitrate in shaping lateral root development and that stimulation of lateral root branching by ammonium occurs in an AMT1;3-dependent manner.  相似文献   

15.
The function of Fig1, a transmembrane protein of the low-affinity calcium uptake system (LACS) in fungi, was examined for its role in the growth and development of the plant pathogen Fusarium graminearum. The Δfig1 mutants failed to produce mature perithecia, and sexual development was halted prior to the formation of perithecium initials. The loss of Fig1 function also resulted in a reduced vegetative growth rate. Macroconidium production was reduced 70-fold in the Δfig1 mutants compared to the wild type. The function of the high-affinity calcium uptake system (HACS), comprised of the Ca(2+) channels Mid1 and Cch1, was previously characterized for F. graminearum. To better understand the roles of the LACS and the HACS, Δfig1 Δmid1, Δfig1 Δcch1, and Δfig1 Δmid1 Δcch1 double and triple mutants were generated, and the phenotypes of these mutants were more severe than those of the Δfig1 mutants. Pathogenicity on wheat was unaffected for the Δfig1 mutants, but the Δfig1 Δmid1, Δfig1 Δcch1, and Δfig1 Δmid1 Δcch1 mutants, lacking both LACS and HACS functions, had reduced pathogenicity. Additionally, Δfig1 mutants of Neurospora crassa were examined and did not affect filamentous growth or female fertility in a Δfig1 mating type A strain, but the Δfig1 mating type a strain failed to produce fertile fruiting bodies. These results are the first report of Fig1 function in filamentous ascomycetes and expand its role to include complex fruiting body and ascus development.  相似文献   

16.
NH(4)(+) acquisition by plant roots is thought to involve members of the NH(4)(+) transporter family (AMT) found in plants, yeast, bacteria, and mammals. In Arabidopsis, there are six AMT genes of which AtAMT1;1 demonstrates the highest affinity for NH(4)(+). Ammonium influx into roots and AtAMT1;1 mRNA expression levels are highly correlated diurnally and when plant nitrogen (N) status is varied. To further investigate the involvement of AtAMT1;1 in high-affinity NH(4)(+) influx, we identified a homozygous T-DNA mutant with disrupted AtAMT1;1 activity. Contrary to expectation, high-affinity (13)NH(4)(+) influx in the amt1;1:T-DNA mutant was similar to the wild type when grown with adequate N. Removal of N to increase AtAMT1;1 expression decreased high-affinity (13)NH(4)(+) influx in the mutant by 30% compared with wild-type plants, whereas low-affinity (13)NH(4)(+) influx (250 microM-10 mM NH(4)(+)) exceeded that of wild-type plants. In these N-deprived plants, mRNA copy numbers of root AtAMT1;3 and AtAMT2;1 mRNA were significantly more increased in the mutant than in wild-type plants. Under most growth conditions, amt1;1:T-DNA plants were indistinguishable from the wild type, however, leaf morphology was altered. However, when grown with NH(4)(+) and sucrose, the mutant grew poorly and died. Our results are the first in planta evidence that AtAMT1;1 is a root NH(4)(+) transporter and that redundancies within the AMT family may allow compensation for the loss of AtAMT1;1.  相似文献   

17.
Fusarium graminearum (teleomorph, Gibberella zeae) is the predominant causal agent of Fusarium head blight (FHB) of wheat resulting in yearly losses through reduction in grain yield and quality and accumulation of fungal generated toxins in grain. Numerous fungal genes potentially involved in virulence have been identified and studies with deletion mutants to ascertain their role are in progress. Although wheat field trials with wild-type and mutant strains are critical to understand the role these genes may play in the disease process, the interpretation of field trial data is complicated by FHB generated by indigenous species of F. graminearum. This report describes the development of a SYBR green-based real time PCR assay that quantifies the total F. graminearum genomic DNA in a plant sample as well as the total F. graminearum genomic DNA contributed from a strain containing a common fungal selectable marker used to create deletion mutants. We found our method more sensitive, reproducible and accurate than other similar recently described assays and comparable to the more expensive probe-based assays. This assay will allow investigators to correlate the amount of disease observed in wheat field trials to the F. graminearum mutant strains being examined.  相似文献   

18.
The contribution of plasma membrane proteins to the virulence of plant pathogenic fungi is poorly understood. Accordingly, the objective of this study was to characterize the acyl-CoA dependent ceramide synthase Bar1 (previously implicated in plasma membrane organization) in the wheat pathogen Fusarium graminearum. The role of Bar1 in mediating cell membrane organization was confirmed as ΔBAR1 mutants failed to display a distinct sterol-rich domain at the hyphal tip. The ΔBAR1 mutants were non-pathogenic when inoculated onto wheat heads, and their in vitro growth also was severely perturbed. ΔBAR1 mutants were incapable of producing perithecia (sexual fruiting structures) and only produced macroconidia (asexual spores) in the presence of NaCl. Sphingolipid analyses indicated that Bar1 is specifically necessary for the production of glucosylceramides in both F. graminearum and Aspergillus nidulans. Interestingly, glucosylceramides appear to mediate sensitivity to heat stable antifungal factor (HSAF), as, in addition to ΔBAR1 mutants, a glucosylceramide synthase deficient mutant of Yarrowia lipolytica is also resistant to HSAF.  相似文献   

19.
The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ~50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation.  相似文献   

20.
Fusarium proliferatum is an important pathogen of maize that is responsible for ear rots, stalk rots and seeding blight worldwide. During the past decade, F. proliferatum has caused several severe epidemics of maize seedling blight in many areas of China, which led to significant losses in maize. To understand the molecular mechanisms in the fungal developmental regulation and pathogenicity, we isolated and characterized the FPK1 gene (GenBank accession No. HQ844224) encoding a MAP kinase homolog of FUS3/KSS1 in yeast. The gene includes a 1,242-bp DNA sequence from ATG to TAA, with a coding region of 1,068 bp, 3 introns (58 bp, 56 bp and 60 bp) and a predicted protein of 355 aa.The mutant ΔFPK1, which has a disruption of the FPK1 gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation and spore germination, as well as deviant germ tube outgrowth. When the strain was inoculated in susceptible maize varieties, the infection of the mutant ΔFPK1 was delayed, and the infection efficiency was reduced compared to the wild-type strain. Complementation of the disruptions within the FPK1 open reading frame restored wild-type levels of conidiation, growth rate and virulence to maize seedlings. Our results indicated that the FPK1 gene functioned in hyphal growth, conidiation, spore germination and virulence in F. proliferatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号