首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The complete nucleotide sequence of a small cryptic plasmid pLK39 isolated from endophytic Salmonella sp. was determined. This plasmid is 4,029 bp long with an overall GC content of 55.4 %. Sequence analyses of pLK39 revealed extensive homology to several plasmids: pRK10, pK, pSW200, pBERT, pST728/06-2, pSW100, pEC3, and pUCD5000. Using the ORF Finder program, 35 putative ORFs was identified, 30 showed more than 35 residues. After performing a search for homologous sequences to the pLK39 at BLASTn software on NCBI, it was ascertained that the plasmid has a ColE1-like replication origin and also a region of mobilization proteins from relaxase family (mobCABD). Besides these mobilization proteins, the pLK39 codes a putative DUF903 protein family, which is characterized as assumed external cytoplasmic membrane lipoprotein. A recombinant form of pLK39 carrying a kanamycin resistance gene is stably maintained in Escherichia coli cells grown in the absence of selection pressure. pLK39 was compatible with pUC18, pBR322, and pACYC184.  相似文献   

2.
Hybrid plasmid pIM138 was constructed by insertion of a chromosomal fragment with the threonme operon fromEscherichia coli into the pBR322 vector. Molar mass of pIM138 was 2.8 Mg/mol. Heteroduplexes between pBR322 vector and pIM138 hybrid DNA molecules were prepared. The hybrid plasmid shows a high stability against the curing effect of rifampicin and clorobiocm inE. coli SK1590thr host.  相似文献   

3.
4.
Abstract

Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3–1?keV/μm, α-particles 116?keV/μm and 36Ar ions 270?keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5–16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.  相似文献   

5.
DNA from plasmid pUC18 was irradiated with low-LET (13 keV/μm) or high-LET (60 keV/μm) carbon ions or X-rays (4 keV/μm) in solutions containing several concentrations of Tris (0.66–200 mM) to determine the yield of abasic (AP) sites and the effect of scavenging capacity. The yield of AP sites, detected as single-strand breaks (SSB) after digestion with E. coli endonuclease IV (Nfo), was compared with that of SSB and base lesions. At higher concentrations of Tris, the yields of single or clustered AP sites were significantly lower than those of single or clustered base lesions. The relative yields of single AP sites and AP clusters were less than 10 and 7 %, respectively, of the total damage produced at a scavenger capacity mimicking that in cells. The dependence of the yield of AP sites on scavenging capacity was similar to that of prompt strand breaks. The ratios of the yield of isolated AP sites to that of SSB induced by carbon ion or X-ray irradiation were relatively constant at 0.45 ± 0.15 over the tested range of scavenger capacity, although the ratio of SSB to double-strand breaks (DSB) showed the characteristic dependence on both scavenging capacity and radiation quality. These results indicate that the reaction of water radiolysis products, presumably OH radicals, with the sugar-phosphate moieties in the DNA backbone induces both AP sites and SSB with similar efficiency. Direct ionization of DNA is notably more involved in the production of DSB and base lesion clusters than in the production of AP site clusters.  相似文献   

6.
With a model system of pBR322 plasmid DNA solution in vitro, the dose effects of radiation- induced single- and double-strand breaks (SSB and DSB) were measured and DSB was distinguished into α- and β-types. Under the condition of low scavenging capacity existing in the irradiated DNA solution, SSB and αDSB were mainly induced by hydroxyl radicals (·OH). Moreover, a certain relationship was obtained between the SSB and αDSB yields and the DNA concentration. It was found that when the DNA solution was irradiated in the presence of 2.5 mmol dm–3 mannitol, the reciprocals of G(SSB) and G(αDSB), respectively, were linearly related to the reciprocal of the DNA concentration, i.e. the competition reactions of DNA and mannitol for ·OH radicals can be described by second-order kinetics. The rate coefficients and the efficiencies of the ·OH radical inducing SSB were deduced. Also, the reaction rate coefficients and the efficiencies for the induction of αDSB from SSB by the ·OH radical transfer mechanism, were first derived from the competition kinetics. Received: 27 October 1999 / Accepted: 15 March 2000  相似文献   

7.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

8.
Fragments produced by partial digestion of plastid DNA fromZea mays withEco RI were cloned in Charon 4A. A circular, fine structure physical map of the plastid DNA was then constructed from restriction endonucleaseSal I,Pst I,Eco RI, andBam HI recognition site maps of cloned overlapping segments of the plastid genome. These fragments were assigned molecular weights by reference to size markers from both pBR322 and lambda phage DNA. Because of the detail and extent of the derived map, it has been possible to construct a coordinate system which has a unique zero point and within which all the restriction fragments and previously described structural features can be mapped. A computer program was constructed which will display in a circular fashion any of the above features using an X-Y plotter.  相似文献   

9.
The effect of high linear energy transfer (LET) radiation on DNAin vitro, both in protective and non-protective environments was investigated. Two hydroxyl radical scavengers, tris(hydroxymethyl) aminomethane and 2-mercaptoethanol, were compared for their ability to protect SV40 DNA from radiation damage over a wide LET range. At comparable OH scavenging capacities, significant differences were found between these protective agents, indicating that other, radical scavenger-dependent processes affected the extent to which the DNA was protected. In general, a decrease in single-strand breaks (SSBs) relative to double-strand breaks (DSBs) was observed as LET increased. This effect was more pronounced when a radioprotector was present. Comparison of the relative biological efficiency (RBE) of radiation damage as LET increased showed a peak of DSB production in the mid-LET range. These data agree with measurements made by Christensen et al. (1972). An explanation for this increase in DSB production efficiency has been proposed based on the particle track structure of high-LET radiation.Correspondence to: G. Taucher-Scholz  相似文献   

10.
11.
Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cells. Mutant hamster cells (xrs-5), deficient in non-homologous end joining (NHEJ), were irradiated at 37 degrees C to determine whether any additional double-strand breaks (DSBs) are formed during processing of gamma-radiation-induced DNA clustered damage sites. A class of non-DSB clustered DNA damage, corresponding to approximately 30% of the initial yield of DSBs, is converted into DSBs reflecting an artefact of preparation of genomic DNA for pulsed field gel electrophoresis. These clusters are removed within 4 min in both NHEJ-deficient and wild-type CHO cells. In xrs-5 cells, a proportion of non-DSB clustered DNA damage, representing approximately 10% of the total yield of non-DSB clustered DNA damage sites, are also converted into DSBs within approximately 30 min post-gamma but not post-alpha irradiation through cellular processing at 37 degrees C. That the majority of radiation-induced non-DSB clustered DNA damage sites are resistant to conversion into DSBs may be biologically significant at environmental levels of radiation exposure, as a non-DSB clustered damage site rather than a DSB, which only constitutes a minor proportion, is more likely to be induced in irradiated cells.  相似文献   

12.
The present work was carried out to evaluate the antioxidant activity of hesperidin and to study its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. The in vitro assays were performed with different concentrations (2, 4, 6, 8, and 10 μg/ml, which were equivalent to 3.27, 6.55, 9.83, 13.10, and 16.38 μM) of hesperidin and the results clearly indicate that hesperidin at 10 μg/ml exhibited radical scavenging activity greater than that of standards like ascorbic acid and trolox. The protective effect of hesperidin on pBR322 DNA and RBC cellular membrane on treatment with different concentrations of H2O2 shows that hesperidin at 2.5 mM converts the open circular form (oc) of pBR322 DNA that is an indication of damage to super coiled (ccc) form and at 10 μg/ml it prevents membrane damage. Thus, our result proves hesperidin to be a valuable antioxidant that protects pBR322 DNA and RBC cellular membrane from free radical induced oxidative damage.  相似文献   

13.
Summary Monomeric pBR322 DNA that had been linearized at its unique SalI site transformed wild-type Escherichia coli with 102 to 103 times less efficiency than CCC plasmid DNA. Dose-response experiments indicated that a single linear plasmid molecule was sufficient to produce a transformant. Transformation with linearized pBR322 DNA was reduced 10 to 40 fold in recA , recBC or recF backgrounds. In contrast, transformation with CCC DNA was unaffected by the rec status of the host. Transformation with linear pBR322 DNA was increased 3-fold in a DNA ligase-overproducing (lop11) mutant and decreased to a similar degree by transient inactivation of ligase in a ligts7 mutant.A proportion (ranging from about 9% in the wild-type to 42% in a recBC, lop11 mutant) of the transformants obtained with SalI-linearized pBR322 monomeric DNA contained deleted plasmids. Deletion rates were generally higher in rec strains. Dephosphorylation of the termini on linear DNA or the creation of blunt-ended pBR322 molecules (by end-filling the SalI 5 protrusions or by cleavage with PvuII) decreased the transformation frequencywhilst increasing the deletion rate.Linear pBR322 dimeric DNA gave transformation frequencies in recA + and recA strains that were reduced only 3 to 7 fold respectively relative to frequencies obtained with dimeric CCC DNA. Furthermore, in contrast to transformation with linear monomeric DNA, deletions were not observed.We propose that the majority of transformants arise, not by simple intracellular reannealing and ligation of the two cohesive SelI-termini of a linear molecule, but by intramolecular recombination. Deleted plasmids could be generated therefore during recyclization caused by recombination between short directly repeated sequences within a pBR322 monomer. We suggest that perfectly recircularized monomeric pBR322 molecules, which are found in the majority of transformants, arise primarily by intramolecular recombinational resolution of head-to-tail linear pBR322 dimers. Such linear oligomeric forms are created during preparation of linearized plasmid DNA by annealing of the SalI cohesive termini and constitute a variable proportion of the total molecules present.  相似文献   

14.
Summary The mini-F plasmid has the trans-acting sopA, sopB genes and the cis-acting sopC DNA which are essential for plasmid partitioning. In this paper, we report the purification of the sopB gene product from extracts of cells harboring a pBR322 derivative carrying the sopB gene. The purity of the final preparation was more than 95%, as determined by densitometry. The amino acid sequence of the amino-terminal region of the protein for the 17 residues identified was identical to that predicted from the DNA sequence of the sopB gene. Therefore, it was concluded that the protein was the sopB gene product. Using anti-SopB serum, the SopB protein was detected in the cell lysates of F+, F, and Hfr strains. The SopB protein bound to the plasmid DNA of a pBR322 derivative carrying the sopC DNA segment, but not to the vector plasmid pBR322.  相似文献   

15.
16.
17.
By the method of gel electrophoresis, radiation-induced DNA single- and double-strand breaks (SSB, DSB) were studied with a model system of pBR322 solution in vitro in the presence of ·OH radical scavengers, mannitol and TE (10–2 mol dm–3 Tris and 10–3 mol dm–3 ethylene diamine tetra-acetic acid). Experiments showed that SSB resulted from one-hit events of radiation energy deposition and DSB resulted from both one-hit and two-hit energy deposition events and so were distinguished into two classes of αDSB and βDSB. Moreover, α/β, where α is the number of DSB per unit dose induced in one irradiation event and β the number of DSB per unit squared dose induced by the combination of two independent SSB, was related to the scavenging capacity, σ, and for σ>108 s–1,αDSB predominate over DSB. On the other hand, if σ<2×108 s–1, the measured G(αDSB) decreased in parallel with G(SSB), i.e., G(αDSB)/G(SSB) was a constant. When σ>2×108 s–1, G(αDSB) decreased slightly so that the ratio of αDSB to SSB evidently increased. Therefore, αDSB could be induced by the radical transfer mechanism for σ<2×108 s–1 and contrarily produced by the local multiply damaged sites (LMDS) mechanism for σ larger than this value. In addition, the distance for two independent complementary SSB forming a DSB was deduced, but no apparent variation of it was found in the wide σ range from ∼105 to ∼109 s–1, which shows that the DNA steric structure was not influenced by mannitol. Received: 28 September 1998 / Accepted in revised form: 20 March 1999  相似文献   

18.
The effect of gibberellic acid (GA3) on gene expression in wheat aleurone cells has been characterised. In-vitro translation of polyadenylated RNA indicated that α-amylase and other messenger-RNA (mRNA) species increase in relative concentration in GA3-treated tissue. At least one mRNA species declines in relative level in response to GA3. There is also a GA3-dependent, four-fold increase in the level of polyadenylated RNA. This effect is largely the result of increased levels of many mRNA species which are also present in untreated tissue. Seven GA3-induced polyadenylated RNA species including the Amyl α-amylase gene product have been cloned as complementary DNA in the plasmid pBR322. These cloned DNAs have been used as hybridisation probes to show that the GA3-induced increase in α-amylase mRNA is more prolonged than the accumulation of the other GA3-regulated mRNA species. A polyadenylated-RNA sequence showing reduced concentration in GA3-treated tissue has also been cloned.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号