首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intermediate filaments (IF), a subfamily of the cytoskeletal filaments, provide structural support to cells. Human diseases related to mutations in IF proteins in which their tissue-specific expression is reflected have been found in a broad range of patients. The properties of identified IF mutants are well-studied in vitro in cultured cells and in vivo using transgenic mice expressing IF mutants. However, the association of IF proteins with diseases of the lung is not fully studied yet. Epithelial cells in normal lung express vimentin and various keratins, and the patterns of their expression are altered depending on the progression of the lung diseases. A growing number of studies performed in alveolar epithelial cells demonstrated IF involvement in disease-related aspects including their usefulness as tumor marker, in epithelial-mesenchymal transition and cell migration. However, the lung disease-associated IF functions in animal models are poorly understood, and IF mutations associated with lung diseases in humans have not been reported. In this review, we summarize recent studies that show the significance of IF proteins in lung epithelial cells. Understanding these aspects is an important prerequisite for further investigations on the role of lung IF in animal models and human lung diseases.  相似文献   

2.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   

3.
Intermediate filaments (IF) isolated from a variety of cultured cells, conventionally described as fibroblasts, are composed predominantely of proteins of molecular weights of 54,000 and/or 55,000. Less than 15% of the protein found in native IF preparations from these cells is composed of three to four polypeptides of molecular weights 60,000- 70,000. We have investigated some biochemical and immunological properties of these proteins isolated from BHK-21 and mouse 3T3 cells. They are capable of forming paracrystals that exhibit a light/dark banding pattern when negatively stained with uranyl acetate. The dark bands are composed of longitudinally aligned approximately 2-nm-diam filaments. The center-to-center spacing between either dark or light bands is 37-40 nm. These dimensions are consistent with the secondary structure of IF polypeptides and suggest that the dark bands represent lateral alignment of alpha-helical coiled-coil domains. Immunoblotting, secondary structure, as well as amino acid composition data indicate that the 60,000-70,000-mol-wt paracrystal polypeptides are similar to keratin. Thus, polypeptides with biochemical and immunological properties of epidermal keratin are present in cells normally considered to be fibroblasts.  相似文献   

4.
Intermediate filament (IF) proteins exist in multiple structural forms within cells including mature IF, short filaments or 'squiggles', and non-filamentous precursors called particles. These forms are interconvertible and their relative abundance is IF type, cell type- and cell cycle stage-dependent. These structures are often associated with molecular motors, such as kinesin and dynein, and are therefore capable of translocating through the cytoplasm along microtubules. The assembly of mature IF from their precursor particles is also coupled to translation. These dynamic properties of IF provide mechanisms for regulating their reorganization and assembly in response to the functional requirements of cells. The recent findings that IF and their precursors are frequently associated with signaling molecules have revealed new functions for IF beyond their more traditional roles as mechanical integrators of cells and tissues.  相似文献   

5.
Intermediate filament (IF) proteins belong to a large and diverse gene family with broad representation in vertebrate tissues. Although considered the 'toughest' cytoskeletal fibers, studies in cultured cells have revealed that IF can be surprisingly dynamic and highly regulated. This review examines the diversity of IF assembly behaviors, and considers the ideas that IF proteins are co- or post-translationally assembled into oligomeric precursors, which can be delivered to different subcellular compartments by microtubules or actomyosin and associated motor proteins. Their interaction with other cellular elements via IF associated proteins (IFAPs) affects IF dynamics and also results in cellular networks with properties that transcend those of individual components. We end by discussing how mutations leading to defects in IF assembly, network formation or IF-IFAP association compromise in vivo functions of IF as protectors against environmental stress.  相似文献   

6.
Khanamiryan L  Li Z  Paulin D  Xue Z 《Biochemistry》2008,47(36):9531-9539
The mechanisms regulating the intermediate filament (IF) protein assembly are complex and not yet fully understood. All vertebrate cytoplasmic IF proteins have a central alpha-helical rod domain flanked by variable head and tail domains. The IF protein synemin cannot homopolymerize to form filament networks; it needs an appropriate copolymerization partner. To elucidate the roles of the vimentin head domain, the TAAL motif in the 2A region, and the TYRKLLEGEE motif in the 2B region of the rod domain in synemin filament formation, we have prepared a series of synemin constructs by site-directed mutagenesis and chimeric synemins having the vimentin head domain. The assembly properties of synemin constructs were assessed by the immunofluorescence of transient transfection into cultured SW13 cells without endogenous IFs. Our data showed that the formation of a filamentous network required at least the vimentin-like head domain and both the 2A and 2B regions of the rod domain.  相似文献   

7.
We previously demonstrated that truncated desmoplakin I (DP I) molecules containing the carboxyl terminus specifically coalign with and disrupt both keratin and vimentin intermediate filament (IF) networks when overexpressed in tissue culture cells (Stappenbeck, T. S., and K. J. Green. J. Cell Biol. 116:1197-1209). These experiments suggested that the DP carboxyl-terminal domain is involved either directly or indirectly in linking IF with the desmosome. Using a similar approach, we have now investigated the behavior of ectopically expressed full-length DP I in cultured cells. In addition, we have further dissected the functional sequences in the carboxyl terminus of DP I that facilitate the interaction with IF networks. Transient transfection of a clone encoding full-length DP I into COS-7 cells produced protein that appeared in some cells to associate with desmosomes and in others to coalign with and disrupt IF. Deletion of the carboxyl terminus from this clone resulted in protein that still appeared capable of associating with desmosomes but not interacting with IF networks. As the amino terminus appeared to be dispensable for IF interaction, we made finer deletions in the carboxyl terminus of DP based on blocks of sequence similarity with the related molecules bullous pemphigoid antigen and plectin. We found a sequence at the very carboxyl terminus of DP that was necessary for coalignment with and disruption of keratin IF but not vimentin IF. Furthermore, the coalignment of specific DP proteins along keratin IF but not vimentin IF was correlated with resistance to extraction by Triton. The striking uncoupling resulting from the deletion of specific DP sequences suggests that the carboxyl terminus of DP interacts differentially with keratin and vimentin IF networks.  相似文献   

8.
Keratin 8 and 18 are simple epithelial intermediate filament (IF) proteins, whose expression is differentiation- and tissue-specific, and is maintained during tumorigenesis. Vimentin IF is often co-expressed with keratins in cancer cells. Recently, IF have been proposed to be involved in signaling pathways regulating cell growth, death and motility. The PI3K/Akt pathway plays a pivotal role in these processes. Thus, we investigated the role of Akt (1 and 2) in regulating IF expression in different epithelial cancer cell lines. Over-expression of Akt1 increases K8/18 proteins. Akt2 up-regulates K18 and vimentin expression by an increased mRNA stability. To our knowledge, these results represent the first indication that Akt isoforms regulate IF expression and support the hypothesis that IFs are involved in PI3K/Akt pathway.  相似文献   

9.
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.  相似文献   

10.
Intermediate filaments (IFs) are structural elements of eukaryotic cells with distinct mechanical properties. Tissue integrity is severely impaired, in particular in skin and muscle, when IFs are either absent or malfunctioning due to mutations. Our knowledge on the mechanical properties of IFs is mainly based on tensile testing of macroscopic fibers and on the rheology of IF networks. At the single filament level, the only piece of data available is a measure of the persistence length of vimentin IFs. Here, we have employed an atomic force microscopy (AFM) based protocol to directly probe the mechanical properties of single cytoplasmic IFs when adsorbed to a solid support in physiological buffer environment. Three IF types were studied in vitro: recombinant murine desmin, recombinant human keratin K5/K14 and neurofilaments isolated from rat brains, which are composed of the neurofilament triplet proteins NF-L, NF-M and NF-H. Depending on the experimental conditions, the AFM tip was used to laterally displace or to stretch single IFs on the support they had been adsorbed to. Upon applying force, IFs were stretched on average 2.6-fold. The maximum stretching that we encountered was 3.6-fold. A large reduction of the apparent filament diameter was observed concomitantly. The observed mechanical properties therefore suggest that IFs may indeed function as mechanical shock absorbers in vivo.  相似文献   

11.
Nuclear and cytoplasmic intermediate filament (IF) proteins segregate into two independent cellular networks by mechanisms that are poorly understood. We examined the role of a 42 amino acid (aa) insert unique to vertebrate lamin rod domains in the coassembly of nuclear and cytoplasmic IF proteins by overexpressing chimeric IF proteins in human SW13+ and SW13- cells, which contain and lack endogenous cytoplasmic IF proteins, respectively. The chimeric IF proteins consisted of the rod domain of human nuclear lamin A/C protein fused to the amino and carboxyl-terminal domains of the mouse neurofilament light subunit (NF-L), which contained or lacked the 42 aa insert. Immunofluorescence microscopy was used to follow assembly and targeting of the proteins in cells. Chimeric proteins that lacked the 42 aa insert colocalized with vimentin, whereas those that contained the 42 aa insert did not. When overexpressed in SW13- cells, chimeric proteins containing the 42 aa formed very short or broken cytoplasmic filaments, whereas chimeric proteins that lacked the insert assembled efficiently into long, stable cytoplasmic filaments. To examine the roles of other structural motifs in intracellular targeting, we added two additional sequences to the chimera, a nuclear localization signal (NLS) and a CAAX motif, which are found in nuclear IF proteins. Addition of an NLS alone or an NLS in combination with the CAAX motif to the chimera with the 42 aa insert resulted in cagelike filament that assembled close to the nuclear envelope and nuclear lamina-like targeting, respectively. Our results suggest that the rod domains of eukaryotic nuclear and cytoplasmic IF proteins, which are related to each other, are still compatible upon deletion of the 42 aa insert of coassembly. In addition, NF-L end domains can substitute for the corresponding lamin domains in nuclear lamina targeting.  相似文献   

12.
13.
《The Journal of cell biology》1984,98(4):1407-1421
Intermediate filaments (IF) isolated from human epithelial cells (HeLa) can be disassembled in 8 M urea and reassembled in phosphate-buffered solutions containing greater than 0.1 mg/ml IF protein. Eight proteins were associated with HeLa IF after several disassembly-reassembly cycles as determined by sodium dodecyl sulfate gel electrophoresis (SDS PAGE). A rabbit antiserum directed against HeLa IF contained antibodies to most of these proteins. The immunofluorescence pattern that was seen in HeLa cells with this antiserum is complex. It consisted of a juxtanuclear accumulation of IF protein and a weblike array of cytoplasmic fibers extending to the cell border. Following preadsorption with individual HeLa IF proteins, the immunofluorescence pattern in HeLa cells was altered to suggest the presence of at least two distinct IF networks. The amino acid composition and alpha-helix content (approximately 38%) of HeLa IF proteins was similar to the values obtained for other IF proteins. One-dimensional peptide maps show extensive homology between the major HeLa IF protein of 55,000-mol- wt and a similar 55,000-mol-wt protein obtained from hamster fibroblasts (BHK-21). HeLa 55,000-mol-wt homopolymer IF assembled under conditions similar to those required for BHK-21 55,000-mol-wt homopolymers. Several other proteins present in HeLa IF preparations may be keratin-like structural proteins. The results obtained in these studies indicate that the major HeLa IF protein is the same major IF structural protein found in fibroblasts. Ultrastructural studies of HeLa cells revealed two distinct IF organizational stages including bundles and loose arrays. In addition, in vitro reconstituted HeLa IF also exhibited these two organizational states.  相似文献   

14.
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central α-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.  相似文献   

15.
The fiber cells of the eye lens possess a unique cytoskeletal system known as the "beaded-chain filaments" (BFs). BFs consist of filensin and phakinin, two recently characterized intermediate filament (IF) proteins. To examine the organization and the assembly of these heteropolymeric IFs, we have performed a series of in vitro polymerization studies and transfection experiments. Filaments assembled from purified filensin and phakinin exhibit the characteristic 19-21-nm periodicity seen in many types of IFs upon low angle rotary shadowing. However, quantitative mass-per-length (MPL) measurements indicate that filensin/phakinin filaments comprise two distinct and dissociable components: a core filament and a peripheral filament moiety. Consistent with a nonuniform organization, visualization of unfixed and unstained specimens by scanning transmission electron microscopy (STEM) reveals the the existence of a central filament which is decorated by regularly spaced 12-15-nm-diam beads. Our data suggest that the filamentous core is composed of phakinin, which exhibits a tendency to self-assemble into filament bundles, whereas the beads contain filensin/phakinin hetero-oligomers. Filensin and phakinin copolymerize and form filamentous structures when expressed transiently in cultured cells. Experiments in IF-free SW13 cells reveal that coassembly of the lens-specific proteins in vivo does not require a preexisting IF system. In epithelial MCF-7 cells de novo forming filaments appear to grow from distinct foci and organize as thick, fibrous laminae which line the plasma membrane and the nuclear envelope. However, filament assembly in CHO and SV40-transformed lens- epithelial cells (both of which are fibroblast-like) yields radial networks which codistribute with the endogenous vimentin IFs. These observations document that the filaments formed by lens-specific IF proteins are structurally distinct from ordinary cytoplasmic IFs. Furthermore, the results suggest that the spatial arrangement of filensin/phakinin filaments in vivo is subject to regulation by host- specific factors. These factors may involve cytoskeletal networks (e.g., vimentin IFs) and/or specific sites associated with the cellular membranes.  相似文献   

16.
Intermediate filaments   总被引:7,自引:0,他引:7  
It is likely that future studies involving a molecular biology approach, similar to those described in [7,27,28], will yield fruitful information regarding properties and cellular roles of IF. At this point, our knowledge of the properties and expression of IF remains in stark contrast to our lack of understanding of their biological functions. As pointed out by Franke et al. [29], several lines of investigation have suggested that IF do not serve a general cellular function (i.e. 'housekeeping duties'). Instead, the roles of IF and their constituent proteins are probably related to specific functions of the differentiated cell. Our search for these specific roles will be difficult, but exciting. In the meantime, it is rewarding that IF typing of cells and tumors has already yielded practical information useful in histology and cytology [30].  相似文献   

17.
The cytoskeleton is a highly complex network of three major intracellular filaments, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs). This network plays a key role in the control of cell shape, division, functions and interactions in animal organs and tissues. Dysregulation of the network can contribute to numerous human diseases. Although small HSPs (sHSPs) and in particular HSP27 (HSPB1) or αB-crystallin (HSPB5) display a wide range of cellular properties, they are mostly known for their ability to protect cells under stress conditions. Mutations in some sHSPs have been found to affect their ability to interact with cytoskeleton proteins, leading to IF aggregation phenotypes that mimick diseases related to disorders in IF proteins (i.e. desmin, vimentin and neuro-filaments). The aim of this review is to discuss new findings that point towards the possible involvement of IFs in the cytoprotective functions of sHSPs, both in physiological and pathological settings, including the likelihood that sHSPs such as HSPB1 may play a role during epithelial-to-mesenchymal transition (EMT) during fibrosis or cancer progression. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

18.
A monoclonal antibody was produced, using as antigen a BHK-21 cytoskeletal preparation enriched in intermediate filaments (IF) and their associated proteins. This antibody reacted exclusively with a reproducible set of 70-280 kD polypeptides present in minor quantities in this preparation, as detected by immunoblot analysis. Based upon several criteria, this immunologically related group of polypeptides was designated as IFAP-70/280 kD (IF-Associated Protein): (1) it co-isolated with IF in vitro, (2) it co-localized (by both immunofluorescence and immunoelectron microscopy) with IF in situ in all stages of cell spreading, and (3) it segregated in vitro with the 54/55 kD (desmin/vimentin) structural IF subunit proteins of BHK cells through two cycles of in vitro disassembly/assembly. Immunogold labeling further localized IFAP-70/280 kD to regions of parallel or loosely bundled IF in situ, suggesting a role in regulating the supramolecular organization of IF. When this monoclonal antibody was used for double-label immunofluorescence observations of colchicine-treated BHK cells, it demonstrated the presence of colchicine-sensitive and colchicine-insensitive IF. Anti-IFAP-70/280 kD localized entirely to the drug-induced juxtanuclear IF cap, while a polyclonal antibody directed against the desmin/vimentin structural IF subunits and the previously characterized monoclonal anti-IFAP-300 kD [Yang et al., 1985; J. Cell Biol. 100:620] localized to both the juxtanuclear IF cap and a colchicine-insensitive IF network peripheral to the cap in the same cells. The colchicine-insensitive IF pattern often exhibited similarities to that observed for the actin-based stress fiber system, suggesting that stress fiber association may be an additional factor in IF organization.  相似文献   

19.
Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.  相似文献   

20.
Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号