首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tautomerism of uracil, 5-fluorouracil, and thymine has been investigated in the gas phase and in solution. Electron correlation effects were included in ab initio computations at the MP2 level, and DFT calculations were performed using the B3LYP level. Full geometry optimizations were conducted at the HF/6-31G**, HF/6-31+G**, and B3LYP/6-31+G** levels. Single-point MP2/6-31+G** calculations were performed on the HF/6-31+G** optimized geometries. The influence of the solvent was examined from self-consistent reaction field calculations performed with )=2.21 (1,4-dioxane) and )=78.54 (water). The calculated relative free energies ((G) indicate that substitution of uracil at the position group does not change the relative free energy order of the uracil tautomers in the gas phase and in 1,4-dioxane (except at the MP2 level) whereas this ordering changes in water. Attachment of a fluorine atom changes the relative free energy order of uracil tautomers in the gas phase and in solution.  相似文献   

2.
Although DNA polymerase fidelity has been mainly ascribed to Watson-Crick hydrogen bonds, two nonpolar isosteres for thymine (T) and adenine (A)--difluorotoluene (F) and benzimidazole (Z) --effectively mimic their natural counterparts in polymerization experiments with pol I (KF exo-) [JC Morales and ET Kool. Nature Struct Biol, 5, 950-954, 1998]. By ab initio quantum chemical gas phase methods (HF/6-31G* and MP2/6-31G**) and a solvent phase method (CPCM-HF/6-31G**), we find that the A-F interaction energy is 1/3 the A-T interaction energy in the gas phase and unstable in the solvent phase. The F-Z and T-Z interactions are very weak and T-Z is quite unstable in the solvent. Electrostatic solvation energy calculations on F, Z and toluene yield that Z is two times, and F and toluene are five times, less hydrophilic than the natural bases. Of the new "base-pairs" (F-Z, T-Z, and F-A), only F-A formed an A-T-like arrangement in unconstrained optimizations. F-Z and T-Z do not freely form planar arrangements, and constrained optimizations show that large amounts of energy are required to make these pairs fit the exact A-T geometry, suggesting that the polymerase does not require all bases to conform to the exact A-T geometry. We discuss a model for polymerase/nucleotide binding energies and investigate the forces and conformational range involved in the polymerase geometrical selection.  相似文献   

3.
The protomeric tautomerizm and conformation of the 2-methyl-4-pyridin-2′-yl-1,5-benzodiazepine molecule were investigated, and its three neutral tautomers (B1,B2,B3) and their rotamers (C1,C2,C3) were considered. Full geometry optimizations were carried out at the HF/6-31G* and B3LYP/6-31G* levels in gas phase and in water. The tautomerization processes in water (ɛ = 78.54) were studied by using self-consistent reaction field theory. The calculation showed that the boat conformation is dominant for the seven-membered diazepine ring in all of the structures, even with different double bond positions. The calculated relative free energies (ΔG) showed that the tautomer C1 was the most stable structure, and its conformer B1 was the second most stable in the gas phase and in water. Figure 2-Methyl-4-pyridin-2′-yl-1,5-benzodiazepine  相似文献   

4.
Using TD-PBE1PBE/6-31G* and TD-B3LYP/6-31G* approaches, we calculated the absorption and emission spectra of 1,8-naphthalmide derivatives in gas-phase. The geometric structures optimized by HF/6-31G* and B3LYP/6-31G* models and the absorption and emission maxima were in good agreement with existed experimental measurements. It was also found that the lowest singlet states corresponded mainly to the electronic transition from the highest occupied orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Intramolecular charge transfer occurred between substituents and naphthalimic rings. Study also showed that most compounds with low absorption excitation energies had low vertical ionization potentials. Finally, the delocalization electronic energies between substituents and naphthalimic rings of isomers were investigated to obtain further sight into their stability.  相似文献   

5.
The relative stabilities of the alkali [M ⊂ 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K ⊂ 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na ⊂ 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes. Figure Alkali cryptates [M ⊂ 222]+ (M = Na, K, Rb and Cs) relative stabilities in gas and methanol:water solution: solvent effects and molecular recognition
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
This work presents a computational study on the molecular structure and tautomeric equilibria of a novel Schiff base L derived from pyridoxal (PL) and o-phenylenediamine by using the density functional method B3LYP with basis sets 6-31 G(d,p), 6-31++G(d,p), 6-311 G(d,p) and 6-311++G(d,p). The optimized geometrical parameters obtained by B3LYP/6-31 G(d,p) method showed the best agreement with the experimental values. Tautomeric stability study of L inferred that the enolimine form is more stable than its ketoenamine form in both gas phase and solution. However, protonation of the pyridoxal nitrogen atom (LH) have accelerated the formation of ketoenamine form, and therefore, both ketoenamine and enolimine forms could be present in acidic media.  相似文献   

7.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

8.
A systematic study has been performed of the proton affinity of a large family of agonists and antagonists of the alpha1-adrenoceptor at the B3LYP/6-31G* level of theory. After a conformational search, all the N atoms were considered as protonation sites and protonation energy values were determined. The inclusion of solvation by means of the Onsager model yielded stabilization in the proton affinity values obtained. In addition, a good correlation was found between the proton affinity values corresponding to the first protonation in gas phase of some of the compounds and their corresponding experimental affinity constants K(i) for the alpha1A adrenergic receptor.  相似文献   

9.
Abstract

The structure of the nonclassical πκ base pair (7–methyl-oxoformycin … 2,4-diaminopyrimidine) was studied at the ab initio Hartree-Fock (HF) and MP2 levels using the 6–31G* and 6–31G** basis sets. The πκ base pair is bound by three parallel hydrogen bonds with the donor-acceptor-donor recognition pattern. Recently, these bases were proposed as an extension of the genetic alphabet from four to six letters (Piccirilli et al. Nature 343, 33(1990)). By the HF/6- 31G* method with full geometry optimization we calculated the 12 degree propeller twist for the minimum energy structure of this complex. The linearity of hydrogen bonds is preserved in the twisted structure by virtue of the pyramidal arrangement of the κ-base amino groups. The rings of both the π and κ molecules remain nearly planar. This nonplanar structure of the πκ base pair is only 0.1 kcal/mol more stable than the planar (Cs) conformation. The HF/6- 31G* level gas-phase interaction energy of πκ (—13.5 kcal/mol) calculated by us turned out to be nearly the same as the interaction energy obtained previously for the adenine-thymine base pair (—13.4 kcal/mol) at the same computational level. The inclusion of p-polarization functions on hydrogens, electron correlation effects (MP2/6–31G** level), and the correction for the basis set superposition error (BSSE) increase this energy to -14.0 kcal/mol.  相似文献   

10.
The synthesis and characterization of the copper(II) complexes of a series of tetradentate, pentadentate and hexadentate aminopyridine ligands that contain ethylenediamine and/or propylenediamine groups are described. The ligands include: 1,12-bis(2-pyridyl)-2,5,8,11-tetraazadodecane, TRIEN-pyr; 1,13-bis(2-pyridyl)-2,5,9,12-tetraazatridecane, DIEN-PN-pyr; 1,14-bis(2-pyridyl)-2,6,9,13-tetraazatetradecane, DIPN-EN-pyr; 1,15-bis(2-pyridyl)-2,6,l0,14-tetraazapentadecane, TRIPN-pyr; 1,9-bis(2-pyridyl)-2,5,8-triazanonane, DIEN-pyr; 1,11-bis(2-pyridyl)-2,6,10-triazaundecanenane, DIPN-pyr; 1,6-bis(2-pyridyl)-2,5-diazahexane, EN-pyr; and 1,7-bis(2-pyridyl)-2,6-diazaheptane, PN-pyr. The following methods were used to determine the binding geometries of the copper(II) complexes in the solid, solution, and gas phases: magnetic susceptibility measurements, absorption spectroscopy, EPR spectroscopy, electrochemistry, and electrospray ionization mass spectrometry. An X-ray structure was determined for the DIPN-pyr complex. The solid state structures were all found to be monomeric Cu(II) complexes with the coordination number set by the denticity of the ligand while the solution structures of all of the complexes except those with TRIPN-pyr and DIPN-pyr were found to be square pyramidal or elongated octahedral. The TRIPN-pyr and DIPN-pyr complexes showed considerable trigonal bipyramidal distortions. The gas phase data showed that the substitution of 6-membered for 5-membered chelate rings helped the ligand span more coordination sites. The TRIEN-pyr complex was 4- or 5-coordinate compared to the 5- or 6-coordination seen with the other three hexadentate ligands, and the DIPN-pyr complex was weakly 5-coordinate as compared to the 4-coordinate DIEN-pyr complex. The preferred structures of the ligands were consistent with their electrochemical behavior which showed the stability of the Cu(II) complex decreased in the order: DIPN-EN-pyr, TRIEN-pyr, DIEN-PN-pyr > DIEN-pyr > DIPN-pyr > TRIPN-pyr >  PN-pyr > EN-pyr.  相似文献   

11.
High level ab initio and density functional calculations, extrapolated to QCISD(T)/6-311+G(3df,2p)//MP2/6-31+G**+ZPE, reveal that cyclic ion pairs can form in the hydrogen bonded complexes of haloboric acids BHnX3-n–HX, X=F, Cl, with Lewis bases HX, H2O, CH3OH, and NH3, even in isolation (e.g., in the gas phase). The intrinsic acidities (deprotonation energies) required for protonation of these bases with formation of gas phase ion pairs are calculated to be <295 kcal/mol for water, <301 kcal/mol for methanol, and <306 kcal/mol for ammonia; such values are common for acidic sites in zeolites. All gas phase ion pairs prefer symmetric bidentate or tridentate structures. In the other cases where hydrogen bonded complexes prevail, symmetric ion pair-like transition structures for multiple hydrogen exchange are computed.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089400060563  相似文献   

12.
A quantum mechanical study of all cis-syn cyclobutane pyrimidine photodimers including the normal and rare tautomeric forms of bases has been performed using the ab initio method at HF/6-31G(d.p), MP2(fc)//HF/6-31G(d,p) and MP2(fc)/6-31G(d,p) levels. A puckering angle of the cyclobutyl ring and twist angle of pyrimidine rings with respect to each other is well described by these calculations. It is predicted that in the gas phase all photodimers containing the rare imino form of cytosine are more stable than those containing its normal form. The Monte Carlo simulations show that the dimer containing the imino form of cytosine is more stabilized by water cluster than that containing its amino forms. The possible biological significance stems from the fact that the cytosine in the dimer directs the incorporation of adenine in the complementary strand during replicative bypass. Data obtained point to the cytosine tautomerism as a possible mechanism for the origin of UV-induced mutation.  相似文献   

13.
Abstract

A quantum mechanical study of all cis-syn cyclobutane pyrimidine photodimers including the normal and rare tautomeric forms of bases has been performed using the ab initio method at HF/6–31G(d,p), MP2(fc)//HF/6–31G(d,p) and MP2(fc)/6–31G(d,p) levels. A puckering angle of the cyclobutyl ring and twist angle of pyrimidine rings with respect to each other is well described by these calculations. It is predicted that in the gas phase all photodimers containing the rare imino form of cytosine are more stable than those containing its normal form. The Monte Carlo simulations show that the dimer containing the imino form of cytosine is more stabilized by water cluster than that containing its amino forms. The possible biological significance stems from the fact that the cytosine in the dimer directs the incorporation of adenine in the complementary strand during replicative bypass. Data obtained point to the cytosine tautomerism as a possible mechanism for the origin of UV-induced mutation.  相似文献   

14.
The electronic and geometric structures of tetracyclo[5.3.0.02,6.03,10]deca-4,8-diene (hypostrophene) have been investigated by ab initio and DFT/B3LYP methods using the 6-31G* and 6-311G* basis sets. The double bonds of hypostrophene are endo-pyramidalized. The cationic intermediates and products formed in the addition reaction have been investigated using the HF/6-311G*, HF/6-311G**, and B3LYP/6-311G* methods. The bridged bromonium cation was more stable than the U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the exo, exo and exo, endo isomers of the N-type dibromide molecule were almost identical. The N-type product was 16.6 kcal mol−1 more stable than the U-type product. Figure General energy diagram of the hypostrophene–bromine (HS–Br2) system (kcal mol−1) (MP2/6-311G*//HF/6-311G*)  相似文献   

15.
Electrospray ionization mass spectrometry (ESI MS) under nanospray conditions has been used to examine the effects of mutation at two key dimer interface residues, Gln (Q) 64 and Thr (T) 75, in Plasmodium falciparum triosephosphate isomerase. Both residues participate in an intricate network of intra- and intersubunit hydrogen bonds. The gas phase distributions of dimeric and monomeric protein species have been examined for the wild type enzyme (TWT) and three mutants, Q64N, Q64E, and T75S, under a wide range of collision energies (40–160 eV). The results established the order of dimer stability as TWT > T75S > Q64E ∼ Q64N. The mutational effects on dimer stability are in good agreement with the previously reported estimates, based on the concentration dependence of enzyme activity. Additional experiments in solution, using inhibition of activity by a synthetic dimer interface peptide, further support the broad agreement between gas phase and solution studies.  相似文献   

16.
Vertical ionization energies (VIEs) of medazepam, nordazepam and their molecular subunits have been calculated using the electron propagator method in the P3/CEP-31G* approximation. Vertical electron affinities (VEAs) have been obtained with a ∆SCF procedure at the DFT-B3LYP/6-31+G* level of theory. Excellent correlations have been achieved between IEcalc and IEexp, allowing reliable assignment of the ionization processes. Our proposed assignment differs in many instances from that previously reported in the literature. The electronic structure of the frontier Dyson orbitals shows that the IE and EA values of the benzodiazepines can be modulated by substitution at the benzene rings. Hardness values, evaluated as (IE − EA)/2, follow the trend of the experimental singlet transition energies. Medazepam is a less hard (i.e., less stable) compound than nordazepam.  相似文献   

17.
18.
The ion-pair SN2 reaction LiNCS + CH3F with two mechanisms, inversion and retention, was investigated at the MP2(full)/6-311+G**//HF/6-311+G** level in the gas phase and in acetone solution. All HF-optimized structures were confirmed by vibrational frequency analysis. Based on IRC analyses, eight possible reaction pathways in the title reaction are proposed. The inversion mechanism through a six-membered-ring transition-state structure is the most favorable. Methyl thiocyanate should form preferentially in the gas phase and the more stable methyl isothiocyanate will be the main product in CH3COCH3. The retardation of the reaction in CH3COCH3 solution was attributed to the differences in the solvation free energies in the separated reactants and transition structures. All of the theoretical results are consistent with the experiment.  相似文献   

19.
Plant microRNA (miRNA) is a crucial regulator of gene expression. It has been reported that more than one miRNA/miRNA* duplex could be produced from a microRNA precursor (pre-miRNA). In this study, we performed a comprehensive search for the novel miRNA candidates on the pre-miRNAs of Arabidopsis. AGO1 enrichment, co-existence of the miRNA*-like coordinates, and unique genome-wide match sites were taken into consideration for candidate screening. As a result, 43 miRNA-like candidates derived from 25 pre-miRNAs were identified. Among these candidates, 31 strong candidates from 22 pre-miRNAs passed all the filtering steps. Interestingly, some of these miRNA-like candidates showed organ-specific expression patterns. After target prediction and degradome sequencing data-based validation, five miRNA candidate–target pairs (ath-miR863-5p.2–AT1G76550.1, ath-miR822.2–AT5G03552.1, ath-miR822.3–AT5G02350.1, sRNA4–AT1G66290.1 and sRNA6–AT1G66310.1) were identified, providing a basis for in-depth functional analysis of these miRNA candidates. These results could update the current understanding of the biogenesis and the action of the plant miRNAs.  相似文献   

20.
The calculation of optimized molecular structure and molecular hyperpolarizability of four new acridine-benzothiazolylamine chromophores (1–4) [2-nitro-6-(piperid-1-yl) acridine (1), 6-(benzothiazol-2-yl-amino)-2-nitro-acridine (2), 6-(6-ethylcarboxylate-benzothiazol-2-yl-amino)-2-nitroacridine (3), 6-(6-(β-hydroxyethyl-benzothiazol-2-yl-amino)-2-nitroacridine (4)] have been investigated using ab initio methods. Ab initio optimization were performed at the Hartree–Fock level using STO-3G basis set. The first hyperpolarizabilities have been calculated at the Hartree–Fock method with 6–31G and 6–311G basis sets using Gaussian 98W. In general, the first hyperpolarizability is dependent on the choice of method and basis set. To understand this phenomenon in the context of molecular orbital picture, we examined the frontier molecular orbital energies of all the molecules by using HF/6–31G, 6–311G levels. The polarizability, anisotropy of polarizability and ground state dipole moment of all the molecules have also been calculated. These acridine-benzothiazolylamine chromophores display significant second–order molecular nonlinearity, β (60.2–137.0 × 10−30 esu) and provide the basis for future design of efficient nonlinear optical materials having the acridine-benzothiazolylamine core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号