首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The isolation of three proteins in crystalline form from ground beef liver is described. These proteins are FTBL protein (Arch. Biochem. Biophys. 188, 251–265 (1978), crotonase, and catalase. Crotonase is isolated by crystallization from a 32 acetone extract of the ground liver. FTBL protein and catalase can subsequently be isolated from the same extract. For optimal yield and ease of isolation, FTBL protein is isolated from a 46.5% acetone extract from which catalase can subsequently be crystallized by dialysis.

The isolation of FTBL protein as well as the isolation of catalase involves a preliminary fractional precipitation and solution before crystallization can be achieved. Isopropanol can be substituted for acetone in the isolation of the above three proteins and in the case of catalase, results in an exceptionally high yield.

Methods for the recrystallization of the proteins are presented and the role of organic solvents in recrystallization is discussed.  相似文献   

2.
Leucine aminopeptidase (LAP) was purified from hog lenses by application of the Himmelhoch procedure for isolation of hog kidney LAP [S. R. Himmelhoch (1970) in Methods in Enzymology (Perlmann, G. E., and Lorand, L., eds.), Vol. 19, pp. 508-513, Academic Press, New York.] This involved treating crude hog lens homogenates with hexadecyltrimethylammonium bromide, DEAE-cellulose adsorption and elution, ammonium sulfate fractionation (53-84% of saturation), and gel filtration on a Bio-Gel A-1.5m column. Purifications ranging from 2080- to 4700-fold with activity yields from 28 to 100% were achieved. The hog lens LAP appeared homogeneous by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE). Bio-Gel chromatography of the native enzyme and SDS-PAGE of dimethylsuberimidate-crosslinked LAP indicated a molecular weight of 326,000. SDS-PAGE of untreated LAP showed a subunit weight of 54,000, consistent with a hexameric enzyme structure. By immunodiffusion, LAP from hog lens and kidney were identical while hog lens and beef lens enzymes demonstrated only partial identity. Electrophoresis of the native enzymes showed a slightly lower mobility for the hog lens LAP than for beef LAP at pH 8.7.  相似文献   

3.
Lyophilization of Dounce and Mourtzikos beef liver catalase (Prep. Biochem. 11 (1981) 501-523) under specified conditions produced conformationally altered but not completely denatured catalase monomer which retained both significant catalatic activity and peroxidatic activity towards ethanol. The same lyophilization procedure used with Sigma Co. catalase produced a mixture of conformationally altered catalase monomer and conformationally altered tetramer which showed still higher catalatic and peroxidatic activities; this was attributed to the presence of the altered tetramer. The catalase monomer obtained by the use of Dounce and Mourtzikos catalase is completely reducible by dithionite, as shown by the two-banded spectrum of the reduced material, but apparently retains enough of its native conformation to show some enzymatic activity, since the fully denatured monomer shows no catalatic or peroxidatic activity towards ethanol. The conformationally altered catalase tetramer, which shows more enzymatic activity than the monomer, evidently retains a higher proportion of its native conformation than the monomer, but still appears to be fully reducible with dithionite. Horseradish peroxidase after reduction with dithionite shows spectral bands at positions close to those of reduced lyophilized catalase, but the relative band heights and contours are different. A possible explanation for the observed differences in lyophilization products depending on the starting material (Sigma Co. catalase versus catalase of Dounce and Mourtzikos) is presented.  相似文献   

4.
The low molecular weight (LMW) apolipoprotein of apo C plays an important role in the metabolism of triglyceride-rich lipoproteins. This study aimed at a characterization of the major LMW apolipoproteins from normal quail strain, and also from LAP (hyperlipidemia atherosclerosis-prone) strain to identify its genetic disorder. The major LMW apoprotein cDNA clone from normal quail comprised of approximately 500 bp, and encoded polypeptide of 78 amino acid residues containing 57 amino acids as a mature apolipoprotein. Although the quail LMW apoprotein showed a low homology to either apo C-I, C-II, or C-III of other animals, it retained a well-developed amphipathic alpha-helix structure. There was no difference in the deduced primary structure of the quail LMW apoprotein between LAP and normal strain. An analysis of the mRNA expression showed that the quail LMW apoprotein was only expressed in the liver of both LAP and normal Japanese quail. No difference was noted in the hepatic expression of the quail LMW apoprotein mRNA between normal and LAP strains with neither normal nor atherogenic dietary conditions. The structure and expression of the major LMW apoprotein thus had no relevance to higher susceptibility of LAP strain to the experimental atherosclerosis.  相似文献   

5.
When solubilized in laurylmaltoside, cytochrome oxidases from beef heart and rat liver mitochondria exist as monodisperse populations that are stable, highly active, and have apparent molecular weights of 300,000 to 350,000, as measured by gel filtration. To determine whether these are monomeric (2 heme A, 2 Cu) or dimeric forms of the enzyme, we performed radiation inactivation and sedimentation equilibrium analyses. From radiation inactivation experiments under two different sets of conditions, we obtained estimates for the functional molecular weight of beef heart cytochrome oxidase of 114,000 and 99,000, much less than a dimer and significantly smaller than a 200,000 molecular weight monomer containing one copy of each of the 12 subunits normally present in the complex. The same functional size is obtained for a rat liver oxidase preparation depleted of subunit III. The physical molecular weight of cytochrome oxidase was determined by sedimentation equilibrium measurements in solvents of different densities using mixtures of H2O and D218O. Estimates of Mr = 194,000 +/- 9,000 for the beef heart oxidase and Mr = 152,000 +/- 6,000 for the rat liver enzyme were obtained, consistent with the size predicted for monomers of their subunit composition. From these results we conclude that mammalian cytochrome oxidases from beef heart and rat liver exist in laurylmaltoside as monomers capable of high rates of electron transfer and normal substrate binding. Further, these functions appear to be associated with a subset of the peptides present in the monomer, mainly composed of subunits I and II.  相似文献   

6.
The vertebrate lens contains so-called taxon-specific water-soluble proteins. One of them is p-crystallin with a molecular weight of 35 kDa characteristic of Ranidae family. We have identified a polypeptide with a molecular weight of 35 kDa in the eye lens of Rana temporaria which: (1) can be extracted from the lens by aqueous salt solutions, (2) has a molecular mass of 36.1 +/- 0.4 kDa (by SDS-electrophoresis) and 37 kDa (by gel filtration), (3) is heterogeneous in terms of isoelectric point (pI 6.5-8.0), (4) binds to heparin-agarose, (5) denatures in response to freezing-thawing, lyophilization and in solutions with low ionic strength. Thus, major biochemical parameters of this polypeptide differ from that of amphibian alpha, beta- and gamma-crystallins. In addition to lens, 35 kDa polypeptide was detected by immunoelectroblotting in retina, testes, liver, kidney, spleen, stomach, intestine and lungs. Its level (as percentage of water-soluble protein) is 1.1 +/- 1.4% in the lens, 1.6 +/- 0.7% in retina. 0.05% in testes and liver and 0.01% or less in other organs. Thus, despite its wide tissue distribution, 53 kDa polypeptide is expressed predominantly in lens and retina. We studied the time-course of appearance and accumulation of this polypeptide in tissues where it is expressed at high or low levels. 35 kDa polypeptide was detected for the first time during larval development: (1) in the lens (some time after the mouth opening; stages 33-34 according to Dabagian and Sleptsova, 1975), (2) in the retina (by the time of anus opening; stages 36-37), (3) in the liver (at the stage of elongated hind limb bud; stages 40-41). Definitive expression level of this protein was achieved in the lens by the beginning of metamorphosis and in the retina and liver during first months of development. Hence, during the whole period of larval development 35 kDa polypeptide content of the lens exceeds that of retina or liver. A more substantial evidence is required to confirm the identity of studied polypeptide with rho-crystallin.  相似文献   

7.
The aim of this work was to purify and characterize the extra-cellular leucine amino peptidase (LAP) from Streptomyces gedanensis and also study its applications for protein hydrolysis. The enzyme was purified to homogeneity by ammonium sulfate fractionation and sequential chromatography steps. LAP appeared to be a monomeric enzyme with a molecular weight of ~75 kDa determined by sodium dodecyl sulfate poly acryl amide gel electrophoresis (SDS-PAGE). The enzyme preferentially hydrolyzed leucine p-nitroanilide followed by Met, Phe, Lys and Arg derivatives. Kinetic studies on the purified enzyme confirmed that it can hydrolyze peptide as well as ester substrates at comparable rates. This amino peptidase was highly resistant to different concentrations of various organic solvents. The characteristics of this amino peptidase, including thermo stability, organic solvent resistance, its activity against various substrates, and also it showed esterase and peptidase activity at comparable rates; identified this amino peptidase as a novel one. The specificity towards aromatic and hydrophobic amino acid residues, the solvent-resistance and thermo stability make this amino peptidase could offer interesting possibilities for various industrial applications including debittering of protein hydrolysates, peptide and ester synthesis.  相似文献   

8.
A novel ENU-induced mutation in the mouse leading to a nuclear and zonular opacity of the eye lens (Aey1) was mapped to chromosome 1 between the markers D1Mit303 and D1Mit332. On the basis of the chromosomal position, the gamma-crystallin encoding gene cluster (Cryg) and the betaA2-crystallin encoding gene Cryba2 were tested as candidate genes. An A --> T mutation destroys the start codon of the Cryge gene in the mutants; this mutation was confirmed by the absence of a restriction site for NcoI in the corresponding genomic fragment of homozygous mutants. The next in-frame start codon is 129 bp downstream; this predicted truncated gammaE-crystallin consists of 131 amino acids, resulting in a molecular mass of 14 kD. However, another open reading frame was observed just 19 bp downstream of the regular Cryge start codon, resulting in a protein of 119 amino acids and a calculated molecular weight of 13 kD. Western blot analysis using polyclonal antibodies against gamma-crystallins or the novel Aey1-specific protein demonstrated the specific expression of the Aey1 protein in the cataractous lenses only; the truncated form of the gammaE-crystallin could not be detected. Therefore, it is concluded that the novel protein destroys the sensitive cellular structure of the eye lens.  相似文献   

9.
UV-light injury of individual crystallins (water soluble proteins of the cattle eye crystalline lens) were studied by SDS PSSG technique. Photodamage resulted in oligomer formation. The appearance of high molecular aggregates with the molecular mass as large as 10(5) D were seen in all fractions of the crystalline.  相似文献   

10.
A phospholipid exchange protein has been purified 2680-fold from beef liver. The assay of the exchange activity of the protein was based on the transfer of [14C]phosphatidylcholine from microsomes labeled with [14C]phosphatidylcholine to liposomes. The homogeneity of the protein has been established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoelectrophoresis and isoelectric focusing. The protein has a molecular weight of approximately 22000 and an isoelectric point of 5.8. The amino acid composition has been determined. The protein contains one disulfide bridge and has glutamic acid as the N-terminal amino acid. Phospholipid, tentatively identified as phosphatidylcholine, was found to be present in the protein preparation. The protein stimulated specifically the exchange of phosphatidylcholine between mitochondria and microsomes from rat liver.  相似文献   

11.
Extracellular leucine aminopeptidase (LAP) from Aspergillus sojae was purified to protein homogeneity by sequential fast protein liquid chromatography steps. LAP had an apparent molecular mass of 37 kDa, of which approximately 3% was contributed by N-glycosylated carbohydrate. The purified enzyme was most active at pH 9 and 70 degrees C for 30 min. The enzyme preferentially hydrolyzed leucine p-nitroanilide followed by Phe, Lys, and Arg derivatives. The LAP activity was strongly inhibited by metal-chelating agents, and was largely restored by divalent cations like Zn(2+) and Co(2+). The lap gene and its corresponding cDNA fragment of the A. sojae were cloned using degenerated primers derived from internal amino acid sequences of the purified enzyme. lap is interrupted by three introns and is transcribed in a 1.3-kb mRNA that encodes a 377-amino-acid protein with a calculated molecular mass of 41.061 kDa. The mature LAP is preceded by a leader peptide of 77 amino acids, predicted to include an 18-amino-acid signal peptide and an extra sequence of 59 amino acids. Two putative N-glycosylation sites are identified in Asn-87 and Asn-288. Southern blot analysis suggested that lap is a single-copy gene in the A. sojae genome. The deduced amino acid sequence of A. sojae LAP shares only 11-33.1% identity with those of LAPs from 18 organisms.  相似文献   

12.
13.
A method is described for the extensive purification of acid deoxyribonuclease (acid DNase) and its specific inhibitor from beef liver, the existence of which had been only supported by indirect evidence. By the use of insolubilized acid deoxyribonuclease, eight other proteins interacting with the enzyme have been detected. One of them (molecular weight, 59,000) was identified as responsible for phosphodiesterase activity which is often a contaminant of DNase preparations. Acid DNase (free of phosphodiesterase) and its inhibitor have been obtained as homogeneous proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of acid DNase and its inhibitor are, respectively, 26,500 and 21,500; those of other proteins range from 17,000 to 112,000. The properties of beef liver acid DNase are similar to those described for the enzymes extracted from other sources. The same alteration of DNase kinetics by this inhibitor, as that previously demonstrated with an impure protein has been confirmed; the sigmoidal shape observed at pH 5 for the plot of initial rate versus substrate concentration progressively disappears with increasing pH. We have also demonstrated that RNA, which inhibits the acid DNase through a competitive binding to the catalytic site, is able, like the substrate, to reverse the binding of inhibitor to the enzyme.  相似文献   

14.
Cataract, a major cause of visual impairment worldwide, is a common disease of the eye lens related to protein aggregation. Several factors including the exposure of ultraviolet irradiation and possibly acidic condition may induce the unfolding and subsequent aggregation of the crystallin proteins leading to crystalline lens opacification. Human γD-crystallin (HγDC), a 173 residue monomeric protein, abundant in the nucleus of the human eye lens, has been shown to aggregate and form amyloid fibrils under acidic conditions and that this aggregation route is thought to be a potential initiation pathway for the onset of age-related nuclear cataract. However, the underlying mechanism of fibril formation remains elusive. This report is aimed at examining the structural changes and possible amyloid fibril formation pathway of HγDC using molecular dynamics and molecular docking simulations. Our findings demonstrated that incubation of HγDC under the acidic condition redistributes the protein surface charges and affects the protein interaction with its surrounding solvent environment. This brings about a twist motion in the overall tertiary structure that gives rise to newly formed anti-parallel β-strands in the C-terminal flexible loop regions. The change in protein structural conformation also involves an alteration in specific salt-bridge interactions. Altogether, these findings revealed a plausible mechanism for amyloid fibril formation of HγDC that is important to the early stages of HγDC aggregation involved in cataractogenesis.  相似文献   

15.
A novel ENU-induced mutation in the mouse leading to a nuclear and cortical opacity of the eye lens (ENU418) was mapped to proximal chromosome 1 by a genome-wide mapping approach. It suggests that the cluster of gamma-crystallin encoding genes (Cryg) and the betaA2-crystallin encoding gene Cryba2 are excellent candidate genes. An A --> G exchange in the middle of intron 1 of the Cryge gene was found as the only alteration cosegregating with the cataractous phenotype. The mutation was confirmed by the presence of a novel restriction site for ApaI in the corresponding genomic DNA fragment. The mutation represses splicing of intron 1; the additional 92 bp in the corresponding cDNA leads to a frameshift and the expression of a novel hybrid protein containing 3 amino acids of the gammaE-crystallin at the N terminus, but 153 novel amino acids. The Cryge(ENU418) protein has a calculated molecular mass of approximately 15.6 kD and an alkaline isoelectric point (pH 10.1) and is predicted to have two hydrophobic domains. Western blot analysis using a polyclonal antibody against the hydrophilic C-terminal part of the Cryge(ENU418)-specific protein demonstrated its stable expression in the cataractous lenses; it was not found in the wild types. Histological analysis of the cataractous lenses indicated that the expression of the new protein disrupts the cellular structure of the eye lens.  相似文献   

16.
UV photodamaging action on individual soluble proteins of the cattle eye crystalline lens were studied by electrofocusing. The most quantitative and qualitative changes were found in gamma-crystallines: a decrease of original polypeptide stripes and appearance of additional components in pI 5.1-6.4 region. The illumination of alpha- and beta H-crystallines resulted in qualitative changes. The appearance of aggregates with the molecular mass above 10(6)D were noticed in all the protein fractions, except beta H-crystalline.  相似文献   

17.
Tyrosyl-tRNA synthetase of beef liver has been isolated and its properties have been studied. Tyrosyl-tRNA synthetase is a structural dimer of alpha 2 type. Mr of the enzyme subunit is about 59 kDa. Km values for substrates have been determined and compared with kinetic properties of tyrosyl-tRNA synthetases from different sources. The polymorphism of tyrosyl-tRNA synthetase was studied. The enzyme was separated into two different forms by chromatography on phosphocellulose P 11. P1-form is active only in the amino acid activation reaction. This form is not due to the phosphorylation of the enzyme. The low molecular weight form (38 kDa) was also isolated. This form appeared due to the limited endogenic proteolysis of the main form and retained full activity in the aminoacylation reaction. Tyrosyl-tRNA synthetase from beef liver has non-specific affinity to rRNA-sepharose.  相似文献   

18.
A phosphatidylcholine transfer protein (PC-TP) of porcine liver was purified to exhibit transfer activity similar to that of bovine liver but with different structural properties. By using hydrophobic Phenyl-agarose column as the last purification step, a 1400-fold purification with 20% yield was attained. Comparative studies on the effects of pH, salt, and temperature on the phosphatidylcholine transfer activity revealed that PC-TP from porcine and bovine livers were similar as far as its activity is concerned. However, the amino acid compositions, the molecular weight, and the elution profiles during protein purification for the two proteins are markedly different. It is suggested that the amino acid composition of PC-TP could be significantly altered without changing its activity and specificity.  相似文献   

19.
Yeast and horse alcohol dehydrogenases are commonly used as standards for radiation inactivation analysis of proteins, usually assuming that the minimal functional unit corresponds to the physical size in solution, a tetramer (Mr = 148,000) and a dimer (Mr = 80,000), respectively. Results described in this paper demonstrate that molecular weight overestimates may be obtained for the yeast protein as a result of its unusual sensitivity to secondary radiation products. Irradiation in the presence of sulfhydryl reagents results in a smaller functional size estimate (67,000 +/- 3000) than that obtained in their absence (128,000 +/- 5000), indicating that some sulfhydryl groups in the enzyme may be particularly susceptible to attack by radiolytic species. Analysis of the horse liver enzyme reveals that although it has structural and functional similarities to the yeast protein, it is not as prone to secondary radiation damage and gives a minimal functional size estimate (33,000 +/- 1000) that most closely corresponds to a monomer. Quantitation of disappearance of the protein from a sodium dodecyl sulfate gel as a function of radiation dose also gives a target size (48,000 +/- 3000) in reasonable agreement with the monomer molecular weight. These results indicate that the individual subunits of horse liver alcohol dehydrogenase have independent catalytic capacity and imply that the same may be true for the yeast enzyme.  相似文献   

20.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of the multienzyme aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free protein. The two forms are thought to be identical except for an extra peptide extension at the NH2-terminus of the larger form which is required for its association with the complex, but is unessential for catalytic activity. It has been suggested that interactions among synthetases in the multienzyme complex are mediated by hydrophobic domains on these peptide extensions of the individual proteins. To test this model we have purified to homogeneity the larger form of arginyl-tRNA synthetase and compared its hydrophobicity to that of its low molecular weight counterpart. We show that whereas the smaller protein displays no hydrophobic character, the larger protein demonstrates a high degree of hydrophobicity. No lipid modification was found on the high molecular weight protein indicating that the amino acid sequence itself is responsible for its hydrophobic properties. These findings support the proposed model for synthetase association within the multienzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号