共查询到19条相似文献,搜索用时 46 毫秒
1.
分子对接技术作为预测蛋白质-核酸复合物结构的有效方法,为研究在生物学过程中蛋白质-核酸的相互作用提供了重要的工具。本文首先分析了当前蛋白质-核酸对接研究中的主要困难,例如构象变化和核糖磷酸骨架的带电性问题。然后从构象搜索、打分函数、柔性策略三个方面比较和总结了蛋白质-核酸对接中主要的计算方法。最后回顾了蛋白质-核酸对接计算模型的应用,并对未来的工作进行了展望。 相似文献
2.
蛋白质-蛋白质分子对接方法是研究蛋白质分子间相互作用与识别的重要理论方法。该方法主要涉及复合物结合模式的构象搜索和近天然结构的筛选两个问题。在构象搜索中,分子柔性的处理是重点也是难点,围绕这一问题,近年来提出了许多新的方法。针对近天然结构的筛选问题,目前主要采用三种解决策略:结合位点信息的利用、相似结构的聚类和打分函数对结构的评价。本文围绕以上问题,就国内外研究进展和本研究小组的工作作详细的综述,并对进一步的研究方向进行了展望。 相似文献
3.
蛋白质与类药分子的柔性对接 总被引:1,自引:0,他引:1
本文利用“禁忌搜索”算法和Gehlhaar简化能量势函数实现蛋白质与类药分子之间的柔性对接。对包含100个复合物的检验集进行了计算检验,得到了满意的结果,89%预测复合物结构的误差小于0.25nm。与利用遗传算法进行柔性对接的GOLD程序相比,本方法的成功率高,局限性小,计算时间也短。 相似文献
4.
预测蛋白质—蛋白质复合物结构的软对接算法 总被引:1,自引:0,他引:1
提出了一种有效的软对接算法 ,用于在已知受体和配体三维结构的条件下预测蛋白质 蛋白质复合物的结构。该算法的分子模型基于Janin提出的简化蛋白质模型 ,并在此基础上有所改进。对蛋白质分子表面的柔性氨基酸残基Arg、Lys、Asp、Glu和Met进行了特殊处理 ,通过软化分子表面的方式考虑了它们的侧链柔性。采用双重过滤技术来排除不合理的对接结构 ,此过滤技术是以复合物界面几何互补性和残基成对偏好性为标准提出的。对所得到的构象进行能量优化 ,之后用打分函数对这些结构进行排序 ,挑选出与复合物天然结构接近的构象。该打分函数包括静电、疏水和范德华相互作用能。用此算法对 2 6个复合物进行了结构预测 ,均找到了近天然结构 ,其中有 2 0个复合物的近天然结构排在了前 10位。改进的分子模型可以在一定程度上描述蛋白质表面残基侧链的柔性 ;双重过滤技术使更多的近天然结构保留下来 ,从而提高了算法成功预测的可能性 ;打分函数可以较合理地评价对接结构。总之 ,此种软对接算法能够对蛋白质分子识别的研究提供有益的帮助。 相似文献
5.
蛋白质分子间相互作用与识别是当前生命科学研究的热点,分子对接方法是研究这一问题的有效手段.为了推进分子对接方法的发展,欧洲生物信息学中心组织了国际蛋白质复合物结构预测(CAPRI)竞赛.通过参加CAPRI竞赛,逐步摸索出了一套用于蛋白质复合物结构预测的集成蛋白质一蛋白质分子对接方法HoDock,它包括结合位点预测、初始复合物结构采集、精细复合物结构采集、结构成簇和打分排序以及最终复合物结构挑选等主要步骤.本文以最近的CAPRI Target 39为例,具体说明该方法的主要步骤和应用.该方法在CAPRI Target 39竞赛中取得了比较好的结果,预测结构Model 10是所有参赛小组提交的366个结构中仅有的3个正确结构之一,其配体均方根偏差(L_Rmsd)为0.25nm.在对接过程中,首先用理论预测和实验信息相结合的方法来寻找蛋白质结合位点残基,确认CAPRI Target 39A链的A31TRP和A191HIS,B链的B512ARG和B531ARG为可能结合位点残基.同时,用ZDock程序做不依赖结合位点的初步全局刚性对接.然后,根据结合位点信息进行初步局部刚性对接,从全局和局部对接中挑出了11个初始对接复合物结构.进而,用改进的Rosetta Dock程序做精细位置约束对接,并对每组对接中打分排序前200的结构进行成簇聚类.最后,综合分析打分、成簇和结合位点三方面的信息,得到10个蛋白质复合物结构.竞赛结果表明,A191HIS,B512ARG和B531ARG三个结合位点残基预测正确,提交的10个蛋白质复合物结构中有5个复合物受体一配体界面残基预测成功率较高.与其他参赛小组的对接结果比较,表明HoDock方法具有一定优势.这些结果说明我们提出的集成分子对接方法有助于提高蛋白质复合物结构预测的准确率. 相似文献
6.
一般的蛋白质对接程序能够提供大量的待选构象,但其中仅含有少量的正确构象。现在对接的主要工作在于如何从这些大量构象中挑出正确构象。我们先前的研究工作证明蛋白质界面比非界面表面具有更高的能量。在这里,我们使用由chen等人提出的一个用于检验、设计对接程序的蛋白质复合物标准库中的非抗原-抗体复合物,将侧链能量运用到对接中,并比较了侧链能量和残基配对倾向性、残基组成倾向性、残基保守性在对接中的表现。单独使用这四项的正确构象的平均百排分位排序分别为:38.6±19.6、26.3±20.8、22.7±16.6和37.8±26.1,但是对于个别蛋白,侧链能量的表现要优于其它的三个参数。我们将四个参数综合起来考虑,发展了一个新的打分函数,平均百排分位排序为22.2±7.8,并且提高了筛选效率。 相似文献
7.
8.
李炜疆 《生物化学与生物物理进展》2001,28(3):314-317
全局极小化方法及其在结构生物学中的应用近年来取得了显著的进展.适当简化的分子对接问题是全局极小化方法的一个很好目标,并且是当前一个相当活跃的研究领域.对接可分为两类:主要用于从头配体设计的细致对接和用于已知化合物数据库筛选以发现药物的粗略对接,它们对全局极小化算法的要求是不同的.简要评述了新出现的适合于对接问题的随机和确定性全局极小化算法,其中势能平滑算法看来很有希望,值得密切关注. 相似文献
9.
蛋白质-蛋白质相互作用及其抑制剂研究进展 总被引:1,自引:0,他引:1
蛋白质-蛋白质相互作用在细胞活动和生命过程中扮演着非常重要的角色。基因调节、免疫应答、信号转导、细胞组装等等都离不开蛋白质-蛋白质的相互作用。近几年,靶向蛋白质-蛋白质相互作用及其抑制剂研究也逐渐成为研究的热点;但是蛋白质复合物相互作用界面的一些特点和性质,如相互作用界面较大、结合界面较为平坦等,使蛋白质-蛋白质相互作用及其抑制剂研究充满了挑战。本文主要总结了蛋白质-蛋白质相互作用界面的一些性质和特点,分析了界面特性与其抑制剂设计的关系,并讨论了蛋白质-蛋白质相互作用的理论预测方法及其抑制剂的类型和特点,最后又通过实例说明了如何进行蛋白质-蛋白质相互作用抑制剂的设计。 相似文献
10.
11.
Yumeng Yan Jiahua He Yuyu Feng Peicong Lin Huanyu Tao Sheng-You Huang 《Proteins》2020,88(8):1055-1069
Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an “acceptable” or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed. 相似文献
12.
13.
An extension of the new computational methodology for drug design, the \"relaxed complex\" method (J.-H. Lin, A. L. Perryman, J. R. Schames, and J. A. McCammon, Journal of the American Chemical Society, 2002, vol. 24, pp. 5632-5633), which accommodates receptor flexibility, is described. This relaxed complex method recognizes that ligand may bind to conformations that occur only rarely in the dynamics of the receptor. We have shown that the ligand-enzyme binding modes are very sensitive to the enzyme conformations, and our approach is capable of finding the best ligand enzyme complexes. Rapid docking serves as an efficient initial filtering method to screen a myriad of docking modes to a limited set, and it is then followed by more accurate scoring with the MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface Area) approach to find the best ligand-receptor complexes. The MM/PBSA scorings consistently indicate that the calculated binding modes that are most similar to those observed in the x-ray crystallographic complexes are the ones with the lowest free energies. 相似文献
14.
Rui Duan Liming Qiu Xianjin Xu Zhiwei Ma Benjamin Ryan Merideth Chi-Ren Shyu Xiaoqin Zou 《Proteins》2020,88(8):1110-1120
CAPRI challenges offer a variety of blind tests for protein-protein interaction prediction. In CAPRI Rounds 38-45, we generated a set of putative binding modes for each target with an FFT-based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU-based docking server, MDockPP, for protein-protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38-45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high-accuracy interface, six medium-accuracy binding modes, and six acceptable-accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high-accuracy, three medium-accuracy, and five acceptable-accuracy binding modes. 相似文献
15.
《Structure (London, England : 1993)》2022,30(11):1550-1558.e3
- Download : Download high-res image (189KB)
- Download : Download full-size image
16.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process. 相似文献
17.
Structural information about protein-protein interactions, often missing at the interactome scale, is important for mechanistic understanding of cells and rational discovery of therapeutics. Protein docking provides a computational alternative for such information. However, ranking near-native docked models high among a large number of candidates, often known as the scoring problem, remains a critical challenge. Moreover, estimating model quality, also known as the quality assessment problem, is rarely addressed in protein docking. In this study, the two challenging problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework. We represent protein and complex structures as intra- and inter-molecular residue contact graphs with atom-resolution node and edge features. And we propose a novel graph convolutional kernel that aggregates interacting nodes’ features through edges so that generalized interaction energies can be learned directly from 3D data. The resulting energy-based graph convolutional networks (EGCN) with multihead attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes. Compared to a state-of-the-art scoring function for model ranking, EGCN significantly improves ranking for a critical assessment of predicted interactions (CAPRI) test set involving homology docking; and is comparable or slightly better for Score_set, a CAPRI benchmark set generated by diverse community-wide docking protocols not known to training data. For Score_set quality assessment, EGCN shows about 27% improvement to our previous efforts. Directly learning from 3D structure data in graph representation, EGCN represents the first successful development of graph convolutional networks for protein docking. 相似文献
18.
Fatemeh Rahimi Gharemirshamlu Kourosh Bamdad Sirous Naeimi 《Journal of cellular biochemistry》2019,120(8):14156-14164
In this study we are looking into two contradicting mutations found in prion protein (PrP) viz G127V and D178V, that are reportedly protective and pathogenic, respectively. Despite significant advances in comprehension of the role of pathogenic mutations, the role of protective mutation in amyloid fold inhibition still lacks a substantial basis. To understand the structural basis of protective mutation, molecular dynamics simulation coupled with protein-protein docking and molecular mechanics/Poisson-Boltzmann surface area analysis was used to understand the instant structural variability brought about by these mutations alone and in combination on PrP and prion-prion complex. Atomic-scale investigations successfully revealed that the binding pattern of prion-prion varies differentially in protective and pathogenic mutations with secondary structure showing distinct contrasting patterns, which could supposedly be a critical factor for differential prion behavior in protective and pathogenic mutations. Considering the reported role of an amyloid fold in prion-prion binding, the contrasting pattern has given us a lead in comprehending the role of these mutations and has been used in this study to look for small molecules that can inhibit amyloid fold for prion-prion interaction in pathogenic mutant carrying PrP. 相似文献
19.
Carol A. Baxter Christopher W. Murray David E. Clark David R. Westhead Matthew D. Eldridge 《Proteins》1998,33(3):367-382
This article describes the implementation of a new docking approach. The method uses a Tabu search methodology to dock flexibly ligand molecules into rigid receptor structures. It uses an empirical objective function with a small number of physically based terms derived from fitting experimental binding affinities for crystallographic complexes. This means that docking energies produced by the searching algorithm provide direct estimates of the binding affinities of the ligands. The method has been tested on 50 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. All water molecules are removed from the structures and ligand molecules are minimized in vacuo before docking. The lowest energy geometry produced by the docking protocol is within 1.5 Å root-mean square of the experimental binding mode for 86% of the complexes. The lowest energies produced by the docking are in fair agreement with the known free energies of binding for the ligands. Proteins 33:367–382, 1998. © 1998 Wiley-Liss, Inc. 相似文献