首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In molecular dynamics simulations the temperature or pressure can be controlled by applying a weak first-order coupling to a bath of constant temperature or pressure. This weak coupling technique to control system properties using a first-order relaxation equation is analyzed from a statistical mechanics point of view. It is shown, how the weak coupling scheme can be generalized and applied to a bath of contstant chemical potential. The presented method, to which in the following will be referred to as chemical potential weak coupling, is applied and tested on a Lennard-Jones fluid. The thermodynamic quantities known from the literature are accuratly reproduced.

The temperature and chemical potential weak coupling methods aim to sample the canonical and grand canonical ensembles respectively. By analyzing the fluctuations in energy and number of particles, the tight relation between the ensembles and the distributions obtained from the weak coupling simulations is demonstrated. The influence of the choice of the coupling parameters on the quality of the approximation of the ensemble distribution is discussed.  相似文献   

2.
The effect of cut-off distance used in molecular dynamics (MD) simulations on fluid properties was studied systematically in both canonical (NVT) and isothermal–isobaric (NPT) ensembles. Results show that the cut-off distance in the NVT ensemble plays little role in determining the equilibrium structure of fluid if the ensemble has a high density. However, pressures calculated in the same NVT ensembles strongly depend on the cut-off distance used. In the NPT ensemble, cut-off distance plays a key role in determining fluid equilibrium structure, density and self-diffusion coefficient. The characteristic of the radial distribution function of fluid in NPT ensembles depending on the cut-off distance used in MD simulations means that the WCA theory (a perturbation theory developed by Weeks, Chandler and Andersen) is not suitable for NPT ensembles because the assumption (the effect of the attractive force in determining the liquid structure is negligible) used in the WCA theory is not valid. The dependence of fluid properties on the cut-off distance also indicates that using the WCA potential (the repulsive part of the intermolecular potential proposed in the WCA theory) to calculate fluid transport in heterogeneous systems could lead to significant errors or incorrect results.  相似文献   

3.
In this review, we summarize the computational methods for sampling the conformational space of biomacromolecules. We discuss the methods applicable to find only lowest energy conformations (global minimization of the potential-energy function) and to generate canonical ensembles (canonical Monte Carlo method and canonical molecular dynamics method and their extensions). Special attention is devoted to the use of coarse-grained models that enable simulations to be enhanced by several orders of magnitude.  相似文献   

4.
Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single‐state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on‐ or off‐target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Proteins 2014; 82:771–784. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
In statistical mechanics, the canonical partition function can be used to compute equilibrium properties of a physical system. Calculating however, is in general computationally intractable, since the computation scales exponentially with the number of particles in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC) method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm – the direct interaction algorithm (DIA) – for approximating the canonical partition function in operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs), which can be computed in operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.  相似文献   

7.
8.
A new computational method is presented that efficiently describes open thermodynamic systems within the grand canonical ensemble formalism. The method is based on the j-walking algorithm, which circumvent sampling difficulties by coupling random walkers in different thermodynamic states. By imposing detailed balance, a new acceptance probability is derived and applied to the construction of adsorption isotherms for atomic monolayers. The method converges much faster than the standard grand canonical Monte Carlo method and permits the construction of accurate adsorption isotherms and the identification of phase transitions occurring in the adsorbed material.  相似文献   

9.
Orio P  Soudry D 《PloS one》2012,7(5):e36670
BACKGROUND: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. MAIN CONTRIBUTIONS: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable--allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used.  相似文献   

10.
Abstract

A new modification of the Gibbs ensemble Monte Carlo computer simulation method for fluid phase equilibria is described. The modification is based on a thermodynamic model for the vapor phase, and uses an equation of state to account for the weak interactions between the vapor phase molecules. Reductions in the computational time by 30–40% as compared to the original Gibbs ensemble method are obtained. The algorithm is applied to Lennard-Jones - (12,6) fluids and their mixtures and the results are in good agreement with results obtained from simulations using the full Gibbs ensemble method.  相似文献   

11.
A rejection-free methodology-based kinetic Monte Carlo (kMC) method has been developed in the grand canonical ensemble to simulate fluid mixtures. It comprises two different moves: entropic displacement of a selected molecule (based on the Rosenbluth algorithm) in the volume space of the system, and exchange of molecules with the surroundings (insertion or deletion). These two moves are made sequentially with M displacement moves followed by one exchange. The displacement moves are treated as sub-NVT sequences within a grand canonical ensemble. The procedure for deletion or insertion of a molecule is either, based on the Rosenbluth algorithm, or on a direct comparison, in which the average activity of one component is compared with its specified activity. The components are chosen either with equal probability or with a probability proportional to their density. The implementation of rejection-free kMC is much simpler than the Metropolis importance sampling MC procedure, which requires three different types of move, all of which must be tested for acceptance or rejection. The new scheme has been evaluated by applying it to fluid argon and to an equimolar mixture of methane, ethane and propane.  相似文献   

12.
Abstract

Nested sampling (NS) has emerged as a powerful statistical mechanical sampling technique to compute the partition function of atomic and molecular systems. From the partition function all thermodynamic quantities can be calculated in absolute terms, including absolute free energies and entropies. In this article, we provide a brief overview of NS within a Bayesian context, as well as overviews of how NS is used to compute the partition functions and thermodynamic quantities in the canonical and isothermal-isobaric ensembles. Then we introduce a new scheme, Coupling Parameter Path Nested Sampling, to estimate the free energy difference between two systems with different potential energy functions. The method uses a NS simulation to traverse the same path through phase space as would be covered in traditional coupling parameter-based methods such as thermodynamic integration and perturbation approaches. We demonstrate the new method with two case studies and confirm its accuracy by comparison to conventional methods, including Widom test particle insertion and thermodynamic integration. The proposed method provides a powerful alternative to traditional coupling parameter-based free energy simulation methods.  相似文献   

13.
When accounting for structural fluctuations or measurement errors, a single rigid structure may not be sufficient to represent a protein. One approach to solve this problem is to represent the possible conformations as a discrete set of observed conformations, an ensemble. In this work, we follow a different richer approach, and introduce a framework for estimating probability density functions in very high dimensions, and then apply it to represent ensembles of folded proteins. This proposed approach combines techniques such as kernel density estimation, maximum likelihood, cross-validation, and bootstrapping. We present the underlying theoretical and computational framework and apply it to artificial data and protein ensembles obtained from molecular dynamics simulations. We compare the results with those obtained experimentally, illustrating the potential and advantages of this representation.  相似文献   

14.
The plasma membrane is the interface between cells and exterior media. Although its existence has been known for a long time, organization of its constituent lipids remain a challenge. Recently, we have proposed that lipid populations may be controlled by chemical potentials of different lipid species, resulting in semigrand canonical thermodynamic ensembles. However, the currently available molecular dynamics software packages do not facilitate the control of chemical potentials at the molecular level. Here, we propose a variation of existing algorithms that efficiently characterizes and controls the chemical nature of each lipid. Additionally, we allow coupling with collective variables and show that it can be used to dynamically create asymmetric membranes. This algorithm is openly available as a plugin for the HOOMD-Blue molecular dynamics engine.  相似文献   

15.
A detailed analysis of high‐resolution structural data and computationally predicted dynamics was carried out for a designed sugar‐binding protein. The mean‐square deviations in the positions of residues derived from nuclear magnetic resonance (NMR) models and those inferred from X‐ray crystallographic B‐factors for two different crystal forms were compared with the predictions based on the Gaussian Network Model (GNM) and the results from molecular dynamics (MD) simulations. GNM systematically yielded a higher correlation than MD, with experimental data, suggesting that the lack of atomistic details in the coarse‐grained GNM is more than compensated for by the mathematically exact evaluation of fluctuations using the native contacts topology. Evidence is provided that particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments. Interestingly, the information conveyed by X‐ray crystallography becomes more consistent with NMR models and computational predictions when ensembles of X‐ray models are considered. Less precise (broadly distributed) ensembles indeed appear to describe the accessible conformational space under native state conditions better than B‐factors. Our results highlight the importance of using multiple conformations obtained by alternative experimental methods, and analyzing results from both coarse‐grained models and atomic simulations, for accurate assessment of motions accessible to proteins under native state conditions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
On the characterization of protein native state ensembles   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

17.
In this paper, we propose a weighted test-area method to calculate surface tension by incorporating the weighting factor from the Bennett method into the free energy perturbation scheme of the test-area method. This new method was tested by comparing against the results of the Bennett and test-area methods for simulations of square well (SW), Lennard-Jones and point charge fluid models. It is seen that the new method is accurate for all these simulations, giving the same results as the Bennett method, in contrast to the test-area method which cannot calculate the surface tension of a SW fluid. The new method converges as quickly, on the basis of computational time required, as the test-area method and almost twice as quickly as the Bennett method. This combination of speed and accuracy means that the weighted test-area method should be used in preference to the test-area method and Bennett method for surface tension and other macroscopic thermodynamic quantities that can be calculated through perturbation methods.  相似文献   

18.
The formation of wall-adherent platelet aggregates is a critical process in arterial thrombosis. A growing aggregate experiences frictional drag forces exerted on it by fluid moving over or through the aggregate. The magnitude of these forces is strongly influenced by the permeability of the developing aggregate; the permeability depends on the aggregate’s porosity. Aggregation is mediated by formation of ensembles of molecular bonds; each bond involves a plasma protein bridging the gap between specific receptors on the surfaces of two different platelets. The ability of the bonds existing at any time to sustain the drag forces on the aggregate determines whether it remains intact or sheds individual platelets or larger fragments (emboli). We investigate platelet aggregation in coronary-sized arteries using both computational simulations and in vitro experiments. The computational model tracks the formation and breaking of bonds between platelets and treats the thrombus as an evolving porous, viscoelastic material, which moves differently from the background fluid. This relative motion generates drag forces which the fluid and thrombus exert on one another. These forces are computed from a permeability-porosity relation parameterized from experimental measurements. Basing this relation on measurements from occlusive thrombi formed in our flow chamber experiments, along with other physiological parameter values, the model produced stable dense thrombi on a similar timescale to the experiments. When we parameterized the permeability-porosity relation using lower permeabilities reported by others, bond formation was insufficient to balance drag forces on an early thrombus and keep it intact. Under high shear flow, soluble agonist released by platelets was limited to the thrombus and a boundary layer downstream, thus restricting thrombus growth into the vessel lumen. Adding to the model binding and activation of unactivated platelets through von Willebrand-factor-mediated processes allowed greater growth and made agonist-induced activation more effective.  相似文献   

19.
20.
Umbrella sampling was used to study, within a Monte-Carlo run, substantial ranges of both temperature and density: i.e. “temperature-and-density-scaling Monte-Carlo” (TDSMC). The paper reviews in detail some of the theory and the practicalities of using the TDSMC technique. For example, we discuss how to generate an appropriate sampling distribution, and the question of appropriate error analysis for TDSMC data. In order to test whether the sampling efficiency might be improved by “stratifying”, the entire investigation was carried out in two ways: by covering the target region of thermodynamic space in a single TDSMC run, and by independently segmenting the same target region into three overlapping subregions, investigated by separate TDSMC runs: the results and relative efficiencies are compared.

These matters, and the potential of the method, are illustrated by application to a Lennard-Jones fluid. The target region covered a substantial region of the thermodynamic space, including the upper part of the gas–liquid coexistence curve, and the TDSMC run provides direct and accurate estimates of relative free energy throughout the region, along with other properties such as the pressure, internal energy, chemical potential and heat capacity. The results are also used to characterise the thermodynamics of the liquid–gas transition in the canonical ensemble. The precision of all these results is substantially better than in other simulation methods of studying such properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号