首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
外泌体(exosomes)是一种能被大多数细胞分泌的微小膜泡,是具有脂质双层膜结构的细胞外囊泡。现认为外泌体是细胞外囊泡(extracellular vesicles, EVs)的一种亚群。研究表明,外泌体是细胞间信息传递的一种载体。肝脏既可以分泌外泌体,同时也是其他组织细胞产生的外泌体的作用靶点,且肝内与肝外来源的外泌体与肝纤维化的形成、发生、发展均有密切联系。本文主要就外泌体在肝纤维化相关疾病中的作用及外泌体与肝纤维化指标之间的关系进行综述。  相似文献   

2.
Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell‐cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules.
  相似文献   

3.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

4.
Extracellular vesicles are known as actual intermediaries of intercellular communications, such as biological signals and cargo transfer between different cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes contain different compounds such as several types of nucleic acids and proteins. In this study, we focused on exosomes in colorectal cancer as good tools that can be involved in various cancer-related processes. Furthermore, we summarize the advantages and disadvantages of exosome extraction methods and review related studies on the role of exosomes in colorectal cancer. Finally, we focus on reports available on relations between mesenchymal stem cell–derived exosomes and colorectal cancer. Several cancer-related processes such as cancer progression, metastasis, and drug resistance of colorectal cancer are related to the cargoes of exosomes. A variety of molecules, especially proteins, microRNAs, and long noncoding RNAs, play important roles in these processes. The microenvironment features, such as hypoxia, also have very important effects on the properties of the origin cell–derived exosomes. On the other hand, exosomes derived from colorectal cancer cells also interfere with cancer chemoresistance. Furthermore, today it is known that exosomes and their contents can likely be very effective in noninvasive colorectal cancer diagnosis and therapy. Thus, exosomes, and especially their cargoes, play different key roles in various aspects of basic and clinical research related to both progression and therapy of colorectal cancer.  相似文献   

5.
Exosomes are small lipid bilayer-enclosed 30–140 nm diameter vesicles formed from endosomes. Exosomes are secreted by various cell types including endothelial cells, immune cells and other cardiovascular tissues, and they can be detected in plasma, urine, cerebrospinal fluid, as well as tissues. Exosomes were initially regarded as a disposal mechanism to discard unwanted materials from cells. Recent studies suggest that exosomes play an important role in mediating of intercellular communication through the delivery and transport of cellular components such as nucleic acids, lipids, and proteins and thus regulate cardiovascular disease. Further, the underlying mechanisms by which abnormally released exosomes promote cardiovascular disease are not well understood. This review highlights recent studies involving endothelial exosomes, gives a brief overview of exosome biogenesis and release, isolation and identification of exosomes, and provides a contemporary understanding of the endothelial exosome pathophysiology and potential therapeutic strategies.  相似文献   

6.
The discovery of exosomes, which are small, 30–100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor–cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune‐modulatory and anti‐tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.  相似文献   

7.

Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.

  相似文献   

8.
Exosomes, which act as biological cargo vessels, are cell-released, phospholipid-enclosed vesicles. In eukaryotic cells, exosomes carry and exchange biological materials or signals for the benefit or detriment to the cells. Thereby, we consider exosomes to be molecular Palkis (carriers). Although exosomes are currently one of the most popularly researched cellular entities, they have remained largely enigmatic and warrant continued investigation into their structure and functions. These membraned vesicles are between 30 and 150 nm in diameter and are actively secreted by all cell types. While initially considered cellular “trash bags,” recent years have revealed exosomes to be dynamic and multi-functional vesicles that may play a crucial role in cancer development, progression and metastasis. Thereby, they have the potential to be used in development of therapeutic modalities for cancer and other diseases. As more research studies emerge, it’s becoming evident that exosomes are released by cells with a purpose and are representatives of certain cell types and disease conditions. Hence, they may also be used as biomarkers for the detection of cancer initiation, progression and organotropic metastatic growth of cancer cells. This review will focus on the recent developments achieved in identifying the role of exosomes in cancer development and progression as well as therapeutic implications. The review will also discuss the pitfalls of methodologies used for the extraction of exosomes.  相似文献   

9.
Exosomes are nanoscale membrane vesicles, which carry biologically active substances of their cell of origin and play an important role in signal transduction and intercellular communication. At present, exosomes have been identified as a promising non-invasive liquid biopsy biomarker in the tissues and circulating blood of nasopharyngeal carcinoma (NPC) and found to participate in regulating pathophysiological process of the tumor. We here review recent insights gained into the molecular mechanisms of exosome-induced cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance and chemotherapy resistance in the development and progression of NPC, as well as the clinical application of exosomes as diagnostic biomarkers and therapeutic agents. We also discuss the limitations and challenges in exosome application. We hope this review may provide some references for the use of exosomes in clinical intervention.  相似文献   

10.
已知细胞间的信息交流不仅可以通过直接接触,或释放信号分子等方式,同时还存在另一种细胞通讯方式即释放外泌体。外泌体是由细胞分泌,直径为30~100 nm的囊泡结构。外泌体含有蛋白质、脂质、mRNAs和miRNAs等成分,并且能够靶向运输到其他细胞或组织中,从而在细胞间的信息交流、物质传递方面发挥重要作用。本文对外泌体的基本特征、形成过程、功能以及在疾病诊断与治疗中的应用等方面进行简要综述,重点介绍外泌体在免疫调控和肿瘤发生方面的功能。外泌体作为一种广泛存在的亚细胞成分,虽然体积小,组成成分简单,然而,其复杂功能具有重要的研究价值。对外泌体功能的深入了解将为肿瘤等疾病的预防和治疗提供更多的诊断标志物、疫苗以及治疗思路与手段。  相似文献   

11.
Exosomes play essential roles in intercellular communications. The exosome was discovered in 1983, when it was found that reticulocytes release 50-nm small vesicles carrying transferrin receptors into the extracellular space. Since then, our understanding of the mechanism and function of the exosome has expanded exponentially that has transformed our perspective of inter-cellular exchanges and the molecular mechanisms that underlie disease progression. Cancer cells generally produce more exosomes than normal cells, and exosomes derived from cancer cells have a strong capacity to modify both local and distant microenvironments. In this review, we summarize the functions of exosomes in cancer development, metastasis, and anti-tumor or pro-tumor immunity, plus their application in cancer treatment and diagnosis/prognosis. Although the exosome field has rapidly advanced, we still do not fully understand the regulation and function of exosomes in detail and still face many challenges in their clinical application. Continued discoveries in this field will bring novel insights on intercellular communications involved in various biological functions and disease progression, thus empowering us to effectively tackle accompanying clinical challenges.  相似文献   

12.
Exosomes, a special type of microparticles produced by cells, are currently of considerable interest for researchers. The term “exosomes” denotes extracellular vesicles of less than 120 nm in size derived from intracellular multivesicular bodies. Multiple studies that address the distinctive features of exosome structure and biochemical composition in various pathological states imply the possibility of development of novel diagnostic techniques based on the detection of changes in the pool of proteins and nucleic acids transported by exosomes. However, methods for isolation and investigation of exosomes are rather difficult to develop because of a small size of these vesicles. A novel approach for preparative-scale isolation of exosomes based on the phenomenon of binding and aggregation of these particles in the presence of lectins has been put forward in the present study. The method developed is relatively cost-effective, allows for the isolation of exosomes from various biological fluids, and has been validated for the subsequent analysis of the protein composition of the exosomes in view of the possible clinical applications. The validation showed that the sedimentation of lectin-aggregated exosomes is a suitable approach for the isolation of these microvesicles from the complete conditioned culture medium in a research-laboratory setup.  相似文献   

13.
Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell–cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen–glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance.  相似文献   

14.
Simpson RJ  Jensen SS  Lim JW 《Proteomics》2008,8(19):4083-4099
Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk. While the biological function of exosomes is still unclear, they can mediate communication between cells, facilitating processes such as antigen presentation and in trans signaling to neighboring cells. Exosome-like vesicles identified in Drosophila (referred to as argosomes) may be potential vehicles for the spread of morphogens in epithelia. The advent of current MS-based proteomic technologies has contributed significantly to our understanding of the molecular composition of exosomes. In addition to a common set of membrane and cytosolic proteins, it is becoming increasingly apparent that exosomes harbor distinct subsets of proteins that may be linked to cell-type associated functions. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo such as prions and retroviruses such as HIV suggest their participation in pathological situations. Interestingly, the recent observation that exosomes contain both mRNA and microRNA, which can be transferred to another cell, and be functional in that new environment, is an exciting new development in the unraveling exosome saga. The present review aims to summarize the physical properties that define exosomes as specific cell-type secreted membrane vesicles.  相似文献   

15.
Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell's plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs.  相似文献   

16.
Pancreatic cancer (PC) is one of the most lethal cancers known worldwide, and its prognosis is poor in most patients. Exosomes are nanosized extracellular vesicles, which are released from various cell types. They are involved in cellular communication. The diagnosis and treatment of PC were improved substantially with exosomes. In this study, we isolated PC-derived exosomes and investigated their proteomic profile. Then, we conducted bioinformatic analysis on proteomic data. Differential ultracentrifugation was performed to isolate exosomes from human serum samples and four PC cell lines. Transmission electron microscopy and Western blot analysis were used to characterize the isolated exosomes. Liquid chromatography coupled with tandem mass spectrometry was conducted to identify the proteome of serum exosomes. Proteomic analysis demonstrated that all the serum exosomes were derived from three cohorts of human subjects; these serum exosomes contained a total of 655 proteins, out of which 315 proteins overlapped with ExoCarta database. Gene oncology and kyoto encyclopedia of genes and genomes analyses provided the functional annotation of the proteome. Interestingly, 18 or 14 proteins were upregulated and 11 or 14 proteins were downregulated in serum exosomes derived from patients with PC as compared with in serum exosomes derived from healthy volunteers or from pancreatitis patients respectively. Annexin A11, a calcium-dependent phospholipid-binding protein, was expressed in a PC cell line (CFPAC-1)-derived exosomes and in tumor tissues of patients with PC, respectively. Our data provided a basic foundation for further studies on the protein composition of PC-derived exosomes and its involvement in PC biology.  相似文献   

17.
Cancer refers to the division of abnormal cells at an uncontrollable rate that possesses the ability to infiltrate and destroy normal tissues. It frequently spreads to normal tissues throughout the body, a condition known as metastasis, which is a significant concern. It is the second leading cause of mortality globally and treatment therapy can assist in improving survival rates. Exosomes are the extracellular vesicles secreted by several cells that act as messengers between cells. When engineered, exosomes act as promising drug delivery vehicles that help achieve targeted action at the tumour site and reduce the limitations of conventional treatments such as castration, chemotherapy, radiation, etc. The present review provides an overview of exosomes, the biogenesis, sources, isolation methods and characterization. The current status and applications of chemotherapeutic agents loaded, engineered exosomes in cancer treatment were convoluted.  相似文献   

18.
Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to “cure” ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100–150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.  相似文献   

19.
外泌体是来源于细胞内吞噬作用的细胞外囊泡(extracellular vesicles,EVs),其含有特定的蛋白质、脂质、RNA和DNA,能将信号传递给受体细胞,从而介导细胞通讯过程。缺氧作为一种严重的细胞应激,是脑部疾病的重要特征,可以诱导外泌体的释放并影响其内容物。越来越多的证据显示,外泌体携带的生物活性物质可以反映其细胞起源和疾病状态,成为诊断或预测缺氧性疾病的潜在生物标志物。现对外泌体的一般特性和功能、缺氧条件下外泌体的分泌机制以及缺氧胁迫下正常神经细胞(例如神经元和星形胶质细胞)和胶质瘤细胞释放的外泌体的作用机制作一综述。  相似文献   

20.
In recent years, the term “extracellular vesicle” (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane‐derived vesicles (ectosomes/microvesicles) and endosome‐derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio‐pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off‐site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote “differentiation” or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号