首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.  相似文献   

2.
3.
4.
5.
Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. When transfected into non-neuronal and neuronal cell lines, steady-state expression levels of [L166P]DJ-1 were dramatically lower than wild-type [WT]DJ-1 and [E64D]DJ-1. Cycloheximide and pulse-chase experiments revealed that the decreased expression levels of [L166P]DJ-1 were because of accelerated protein turnover. Proteasomal degradation was not the major pathway of DJ-1 breakdown because treatment with the proteasome inhibitor MG-132 caused only minimal accumulation of DJ-1, even of the very unstable [L166P]DJ-1 mutant. Because of the structural resemblance of DJ-1 with bacterial cysteine proteases, we considered an autoproteolytic mechanism. However, neither pharmacological inhibition nor site-directed mutagenesis of the putative active site residue Cys-106 stabilized DJ-1. To gain further insight into the structural defects of DJ-1 mutants, human [WT]DJ-1 and both mutants were expressed in Escherichia coli. As in eukaryotic cells, expression levels of [L166P]DJ-1 were dramatically reduced compared with [WT]DJ-1 and [E64D]DJ-1. Circular dichroism spectrometry revealed that the solution structures of [WT]DJ-1 and [E64D]DJ-1 are rich in beta-strand and alpha-helix conformation. Alpha-helices were more susceptible to thermal denaturation than the beta-sheet, and [WT]DJ-1 was more flexible in this regard than [E64D]DJ-1. Thus, structural defects of [E64D]DJ-1 only become apparent upon denaturing conditions, whereas the L166P mutation causes a drastic defect that leads to excessive degradation.  相似文献   

6.
DJ-1 is the third gene that has been linked to Parkinson disease. Mutations in the DJ-1 gene cause early onset PD with autosomal recessive inheritance. To clarify the mechanism of DJ-1 protection, we have overexpressed the gene in cultured dopaminergic cells that were then subjected to chemical stress. In the rat dopaminergic cell line, N27, and in primary dopamine neurons, overexpression of wild type DJ-1 protected cells from death induced by hydrogen peroxide and 6-hydroxydopamine. Overexpressing the L166P mutant DJ-1 had no protective effect. By contrast, knocking down endogenous DJ-1 with antisense DJ-1 rendered cells more susceptible to oxidative damage. We have found that DJ-1 improves survival by increasing cellular glutathione levels through an increase in the rate-limiting enzyme glutamate cysteine ligase. Blocking glutathione synthesis eliminated the beneficial effect of DJ-1. Protection could be restored by adding exogenous glutathione. Wild type DJ-1 reduced cellular reactive oxygen species and reduced the levels of protein oxidation caused by oxidative stress. By a separate mechanism, overexpressing wild type DJ-1 inhibited the protein aggregation and cytotoxicity usually caused by A53T human alpha-synuclein. Under these circumstances, DJ-1 increased the level of heat shock protein 70 but did not change the glutathione level. Our data indicate that DJ-1 protects dopaminergic neurons from oxidative stress through up-regulation of glutathione synthesis and from the toxic consequences of mutant humanalpha-synuclein through increased expression of heat shock protein 70. We conclude that DJ-1 has multiple specific mechanisms for protecting dopamine neurons from cell death.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor. Loss-of-function mutations in the DJ-1 gene have been linked to early onset PD, and age-dependent over-oxidation of DJ-1 is thought to contribute to sporadic PD. The familial mutant L166P fails to dimerize and is rapidly degraded, suggesting that protein destabilization accounts for the dysfunction of this mutant. In this study, we investigated how the structure and stability of DJ-1 are impacted by two other pathogenic substitutions (M26I and E64D) and by over-oxidation with H2O2. Whereas the recombinant wild-type protein and E64D both adopted a stable dimeric structure, M26I showed an increased propensity to aggregate and decreased secondary structure. Similar to M26I, over-oxidized wild-type DJ-1 exhibited reduced secondary structure, and this property correlated with destabilization of the dimer. The engineered mutant C106A had a greater thermodynamic stability and was more resistant to oxidation-induced destabilization than the wild-type protein. These results suggest that (i) the M26I substitution and over-oxidation destabilize dimeric DJ-1, and (ii) the oxidation of cysteine 106 contributes to DJ-1 destabilization. Our findings provide a structural basis for DJ-1 dysfunction in familial and sporadic PD, and they suggest that dimer stabilization is a reasonable therapeutic strategy to treat both forms of this disorder.  相似文献   

8.
Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD.  相似文献   

9.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

10.
Mutations in DJ-1 gene have been linked to autosomal recessive early onset parkinsonism (AR-EOP). Although the mechanism of neuronal cell death due to DJ-1 mutation has not been fully elucidated, loss of DJ-1 function was considered to cause the phenotype. Here, we demonstrated that the down regulation of endogenous DJ-1 of the neuronal cell line by siRNA enhanced the cell death which was induced by oxidative stress, ER stress, and proteasome inhibition, but not by pro-apoptotic stimulus. The cell death with hydrogen peroxide was dramatically rescued by over-expression of wild-type DJ-1, but not by that of L166P mutant DJ-1. Furthermore, DJ-1 rescued the cell death caused by over-expression of Pael receptor, which was a substrate of Parkin, another gene product for autosomal recessive juvenile parkinsonism. These results suggest that loss of protective activity of DJ-1 from neuro-toxicity induced by these stresses contributes to neuronal cell death in AR-EOP with mutant DJ-1.  相似文献   

11.
12.
13.
Abstract: The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/−) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/− mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/− and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/− mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/− and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/− mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/− mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/− mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

14.
15.
The identification of genetic mutations responsible for rare familial forms of Parkinson's disease (PD) have provided tremendous insight into the molecular pathogenesis of this disorder. Mutations in the DJ-1 gene cause autosomal recessive early onset PD in two European families. A Dutch kindred displays a large homozygous genomic deletion encompassing exons 1-5 of the DJ-1 gene, whereas an Italian kindred harbors a single homozygous L166P missense mutation. A homozygous M26I missense mutation was also recently reported in an Ashkenazi Jewish patient with early onset PD. Mutations in DJ-1 are predicted to be loss of function. The recent determination of the crystal structure of human DJ-1 demonstrates that it exists in a homo-dimeric form in vitro, whereas the L166P mutant exists only as a monomer. Here, we examine the in vivo effects of the pathogenic L166P and M26I mutations on the properties of DJ-1 in cell culture. We report that the L166P mutation confers markedly reduced protein stability to DJ-1, which results from enhanced degradation by the 20S/26S proteasome but not from a loss of mRNA expression. Furthermore, the L166P mutant protein exhibits an impaired ability to self-interact to form homo-oligomers. In contrast, the M26I mutation does not appear to adversely affect either protein stability, turnover by the proteasome, or the capacity of DJ-1 to form homo-oligomers. These properties of the L166P mutation may contribute to the loss of normal DJ-1 function and are likely to be the underlying cause of early onset PD in affected members of the Italian kindred.  相似文献   

16.
17.
18.
DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H(2)O(2))-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H(2)O(2), was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH.  相似文献   

19.
20.
Mitochondrial dysfunction, proteasome inhibition, and α-synuclein aggregation are thought to play important roles in the pathogenesis of Parkinson's disease (PD). Rare cases of early-onset PD have been linked to mutations in the gene encoding DJ-1, a protein with antioxidant and chaperone functions. In this study, we examined whether DJ-1 protects against various stresses involved in PD, and we investigated the underlying mechanisms. Expression of wild-type DJ-1 rescued primary dopaminergic neurons from toxicity elicited by rotenone, proteasome inhibitors, and mutant α-synuclein. Neurons with reduced levels of endogenous DJ-1 were sensitized to each of these insults, and DJ-1 mutants involved in familial PD exhibited decreased neuroprotective activity. DJ-1 alleviated rotenone toxicity by up-regulating total intracellular glutathione. In contrast, inhibition of α-synuclein toxicity by DJ-1 correlated with up-regulation of the stress-inducible form of Hsp70. RNA interference studies revealed that this increase in Hsp70 levels was necessary for DJ-1-mediated suppression of α-synuclein aggregation, but not toxicity. Our findings suggest that DJ-1 acts as a versatile pro-survival factor in dopaminergic neurons, activating different protective mechanisms in response to a diverse range of PD-related insults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号