首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine whether angiogenic cytokines, which induce neovascularization in the blood vascular system, might also be operative in the lymphatic system. In an assay of spontaneous in vitro angiogenesis, endothelial cells isolated from bovine lymphatic vessels retained their histotypic morphogenetic properties by forming capillary-like tubes. In a second assay, in which endothelial cells could be induced to invade a three-dimensional collagen gel within which they formed tube-like structures, lymphatic endothelial cells responded to basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) in a manner similar to what has previously been observed with endothelial cells derived from the blood vascular system. Finally, since angiogenesis is believed to require extracellular proteolytic activity, we investigated the effects of bFGF and VEGF on lymphatic endothelial cell proteolytic properties by focussing on the plasminogen activator (PA) system. bFGF and VEGF increased urokinase, urokinase receptor, and tissue-type PA expression. This was accompanied by an increase in PA inhibitor-l, which is thought to play an important permissive role in angiogenesis by protecting the extracellular matrix against excessive proteolytic degradation. Taken together, these results demonstrate that with respect to in vitro morphogenetic and proteolytic properties, lymphatic endothelial cells respond to the previously described angiogenic factors, bFGF and VEGF, in a manner very similar to what has been described for endothelial cells derived from the blood vascular system.  相似文献   

2.
3.
Little is known about the expression pattern of vascular endothelial growth factor (VEGF) among smooth muscle cells of different arterial regions. Therefore, we have conducted studies aimed at increasing expression of VEGF in cultured human smooth muscle cells (SMCs) from different sites: aorta, umbilical artery, and coronary artery. Two plasmids harboring human VEGF121 and VEGF165 isoforms, respectively, were constructed and lipotransfected into vascular SMCs, using the Fu-GENE 6. Extensive optimization of transfection conditions were performed prior to this. Different basal levels of VEGF were observed between cell types: from 0.51–0.95 pg/mL/μg protein in umbilical artery, through 2.32–2.39 pg/mL/μg protein in coronary artery, to 5.45–7.52 pg/mL/μg protein in aortic SMCs. Significant differences in responses to transfection were also observed: The increase in VEGF production was most pronounced in umbilical artery SMCs (e.g., with 4 μg VEGF121-cDNA/in the wells)—an approximate 600-fold as opposed to an 18-fold increase in aortic SMCs and a 29-fold increase in coronary artery SMCs. In addition, we observed significant increases in proliferation rate of aortic and coronary endothelial cells (ECs), after incubation with conditioned medium from VEGF-transfected SMCs. Observed changes differed in relation to cell origin and isoform.  相似文献   

4.
During inflammation, high‐mobility group box 1 in reduced all‐thiol form (at‐HMGB1) takes charge of chemoattractant activity, whereas only disulfide‐HMGB1 (ds‐HMGB1) has cytokine activity. Also as pro‐angiogenic inducer, the role of HMGB1 in different redox states has never been defined in tumour angiogenesis. To verify which redox states of HMGB1 induces angiogenesis in colorectal carcinoma. To measure the expression of VEGF‐A and angiogenic properties of the endothelial cells (ECs), at‐HMGB1 or ds‐HMGB1 was added to cell medium, further with their special inhibitors (DPH1.1 mAb and 2G7 mAb) and antibodies of corresponding receptors (RAGE Ab and TLR4 Ab). Also, a co‐culture system and conditioned medium from tumour cells were applied to mimic tumour microenvironment. HMGB1 triggered VEGF‐A secretion mainly through its disulfide form interacting with TLR4, while co‐operation of at‐HMGB1 and RAGE mediated migratory capacity of ECs. Functional inhibition of HMGB1 and its receptors abrogated HMGB1‐induced angiogenic properties of ECs co‐cultured with tumour cells. HMGB1 orchestrates the key events of tumour angiogenesis, migration of ECs and their induction to secrete VEGF‐A, by adopting distinct redox states.  相似文献   

5.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

6.
Atherosclerosis is an inflammatory disease that is one of the leading causes of death in developed countries. This disease is defined by the formation of an atherosclerotic plaque, which is responsible for artery obstruction and affects the heart by causing myocardial infarction. The vascular wall is composed of three cell types and includes a monolayer of endothelial cells and is irrigated by a vasa vasorum. The formation of the vascular network from the vasa vasorum is a process involved in the destabilization of this plaque. Cellular and molecular approaches are studied by in vitro assay of activated endothelial cells and in in vivo models of neovascularization. Chemokines are a large family of small secreted proteins that have been shown to play a critical role in the regulation of angiogenesis during several pathophysiological processes such as ischaemia. Chemokines may exert their regulatory activity on angiogenesis directly by activating the vasa vasorum, or as a consequence of leucocyte infiltration through the endothelium, and/or by the induction of growth factor expression such as that of VEGF (vascular endothelial growth factor). The present review focuses on the angiogenic activity of the chemokines RANTES (regulated upon activation, normal T-cell expressed and secreted)/CCL5 (CC chemokine ligand 5). RANTES/CCL5 is released by many cell types such as platelets or smooth muscle cells. This chemokine interacts with GPCRs (G-protein-coupled receptors) and GAG (glycosaminoglycan) chains bound to HSPGs (heparan sulfate proteoglycans). Many studies have demonstrated, using RANTES/CCL5 mutated on their GAG or GPCR-binding sites, the involvement of these chemokines in angiogenic process. In the present review, we discuss two controversial roles of RANTES/CCL5 in the angiogenic process.  相似文献   

7.
Vascular endothelial growth factor-C (VEGF-C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF-C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF-C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF-C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR-1 and -2, whereas of the three cell lines assessed, only BAE cells express VEGFR-3. We also demonstrate that VEGF-C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor-1. Addition of α2-antiplasmin to BME cells co-treated with bFGF and VEGF-C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF-C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF-C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis-regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell. J. Cell. Physiol. 177:439–452, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
A possible strategy for creating three-dimensional (3D) tissue-engineered organs in vitro with similar volumes to the primary organs is to develop a capillary network throughout the constructs to provide sufficient oxygenation and nutrition to the cells composing them. Here, we propose a novel approach for the creation of a capillary-like network in vitro, based on the spontaneous tube-forming activity of vascular endothelial cells (ECs) in collagen gel. We fabricated a linear tube of 500 microm in diameter, the inner surface of which was filled with bovine carotid artery vascular endothelial cells (BECs), in type I collagen gel as a starting point for the formation of a capillary-like network. The BECs exposed to a medium containing vascular endothelial growth factor (VEGF) migrated into the ambient gel around the tube. After 2 weeks of VEGF exposure, the distance of the migration into the ambient gel in the radial direction of the tube reached approximately 800 microm. Cross-sections of capillary-like structures composed of the migrating BECs, with a lumen-like interior space, were observed in slices of the gel around the tube stained with hematoxylin-eosin (H&E). These results demonstrate that this approach using a pre-established tube, which is composed of ECs, as a starting point for a self-developing capillary-like network is potentially useful for constructing 3D organs in vitro.  相似文献   

9.
We have previously shown that intravitreal injection of plasminogen kringle 5 (K5), a potent angiogenic inhibitor, inhibits ischemia-induced retinal neovascularization in a rat model. Here we report that K5 down-regulates an endogenous angiogenic stimulator, vascular endothelial growth factor (VEGF) and up-regulates an angiogenic inhibitor, pigment epithelium-derived factor (PEDF) in a dose-dependent manner in vascular cells and in the retina. The regulation of VEGF and PEDF by K5 in the retina correlates with its anti-angiogenic effect in a rat model of ischemia-induced retinopathy. Retinal RNA levels of VEGF and PEDF are also changed by K5. K5 inhibits the p42/p44 MAP kinase activation and nuclear translocation of hypoxia-inducible factor-1alpha, which may be responsible for the down-regulation of VEGF. Down-regulation of endogenous angiogenic stimulators and up-regulation of endogenous angiogenic inhibitors, thus leading toward restoration of the balance in angiogenic control, may represent a mechanism for the anti-angiogenic activity of K5.  相似文献   

10.
Fetal bovine aortic endothelial cells (FBAEC) were exposed to purified fractions of conditioned medium from cultures of hair dermal papilla cells (DPC) to determine the existence of any vascular endothelial growth factor (VEGF)-like paracrine activity of the latter. Such fractions were tested for stimulation of growth and migration of cultured FBAEC. In addition, VEGF secretion by DPC was measured by radioassay of VEGF receptors using FBAEC as target cells. The results showed that stimulation of FBAEC proliferation and migration following exposure to purified conditioned medium was dose-dependent. Radioreceptor assays of recombinant VEGF and purified DPC-conditioned medium showed competitive VEGF binding in FBAEC.Abbreviations CM conditioned medium - DMEM Dulbecco's modified eagle's medium - DPC dermal papilla cells - EDTA ethylenediaminetetra-acetic acid - FBAEC fetal bovine aortic endothelial cells - FCS fetal calf serum - VEGF vascular endothelial growth factor  相似文献   

11.
Vascular endothelial growth factor (VEGF) promotes neovascularization, microvascular permeability, and endothelial proliferation. We described previously VEGF mRNA and protein induction by estradiol (E2) in human endometrial fibroblasts. We report here E2 induction of VEGF expression in human venous muscle cells [smooth muscle cells (SMC) from human saphenous veins; HSVSMC] expressing both ER-alpha and ER-beta estrogen receptors. E2 at 10(-9) to 10(-8) M increases VEGF mRNA in HSVSMC in a time-dependent manner (3-fold at 24 h), as analyzed by semiquantitative RT-PCR. This level of induction is comparable with E2 endometrial induction of VEGF mRNA. Tamoxifen and hypoxia also increase HSVSMC VEGF mRNA expression over control values. Immunocytochemistry of saphenous veins and isolated SMC confirms translation of VEGF mRNA into protein. Immunoblot analysis of HSVSMC-conditioned medium detects three bands of 18, 23, and 28 kDa, corresponding to VEGF isoforms of 121, 165, and 189 amino acids. Radioreceptor assay of the conditioned medium produced by E2-stimulated HSVSMC reveals an increased VEGF secretion. Our data indicate that VEGF is E2, tamoxifen, and hypoxia inducible in cultured HSVSMC and E2 inducible in aortic SMC, suggesting E2 modulation of VEGF effects in angiogenesis, vascular permeability, and integrity.  相似文献   

12.
Vasculotropin/vascular endothelial cell growth factor (VAS/VEGF) is a newly purified growth factor with a unique specificity for vascular endothelial cells. We have investigated the interactions of VAS/VEGF with human umbilical vein endothelial cells (HUVE cells). 125I-VAS/VEGF was bound to HUVE cells in a saturable manner with a half-maximum binding at 2.8 ng/ml. Scatchard analysis did show two classes of high-affinity binding sites. The first class displayed a dissociation constant of 9 pM with 500 sites/cell. The dissociation constant and the number of binding sites of the second binding class were variable for different HUVE cell cultures (KD = 179 ± 101 pM, 5,850 ± 2,950 sites/cell). Half-maximal inhibition of 125I-VAS/VEGF occurred with a threefold excess of unlabeled ligand. Basic fibroblast growth factor (bFGF) and heparin did not compete with 125I-VAS/VEGF binding. In contrast, suramin and protamin sulfate completely displaced 125I-VAS/VEGF binding from HUVE cells. VAS/VEGF was shown to be internalized in HUVE cells. Maximum internalization (55% of total cell-associated radioactivity) was observed after 30 min. 125I-VAS/VEGF was completely degraded 2–3 hr after binding. At 3 hr, the trichloroacetic acid (TCA)-soluble radioactivity accumulated in the medium was 60% of the total radioactivity released by HUVE cells. No degradation fragment of 125I-VAS/VEGF was observed. Chloroquine completely inhibited degradation. VAS/VEGF was able to induce angiogenesis in vitro in HUVE cells. However, it did not significantly modulate urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and tissue factor (TF). Prostacyclin production was only stimulated at very high VAS/VEGF concentrations. Taken together, these results indicate that VAS/VEGF might be a potent inducer of neovascularization resulting from a direct interaction with endothelial cells. The angiogenic activity seems to be independent of the plasminogen activator or inhibitor system.  相似文献   

13.
Samples from corpus haemorrhagicum, mid-cycle corpus luteum (CL) and late-cycle CL were tested for their abilities to stimulate neovascularization of chorioallantoic membranes (CAM) of developing chicks. Responses were graded from 0 to 4 (4 being the greatest response). Luteal tissue implants from each stage of the oestrous cycle stimulated growth of CAM blood vessels, and vascular responses increased with age of CL. Implants from late-cycle CL were typically graded 3 or 4. Luteal tissues from several stages of development were also incubated for 6 h in serum-free medium containing no hormone, LH, PGF-2 alpha or both hormones. Media conditioned by luteal tissues were assayed for progesterone and tested for their ability to stimulate mitogenesis and migration of bovine aortic endothelial cells in vitro. All media conditioned by luteal tissues stimulated mitogenesis and migration of endothelial cells, but media from late-cycle CL exhibited the greatest activity. Luteinizing hormone significantly increased in-vitro secretion of a factor(s) that stimulated migration of endothelial cells. PGF-2 alpha alone had no effect on production of endothelial cell mitogen or migration-stimulating factor(s) from luteal incubations; however, the ability of LH to enhance secretion of the migration-stimulating factor(s) was blocked by PGF-2 alpha. This study demonstrates that angiogenic activity of bovine luteal tissues increases with age of the CL and in-vitro secretion of angiogenic factor is responsive to hormones known to regulate luteal function.  相似文献   

14.
Endothelial progenitor cell (EPC) transplantation induces the formation of new blood-vessel networks to supply nutrients and oxygen, and is feasible for the treatment of ischemia and cardiovascular diseases. However, the role of EPCs as a source of proangiogenic cytokines and consequent generators of an extracellular growth factor microenvironment in three-dimensional (3D) microvessel formation is not fully understood. We focused on the contribution of EPCs as a source of proangiogenic cytokines on 3D microvessel formation using an in vitro 3D network model. To create a 3D network model, EPCs isolated from rat bone marrow were sandwiched with double layers of collagen gel. Endothelial cells (ECs) were then cultured on top of the upper collagen gel layer. Quantitative analyses of EC network formation revealed that the length, number, and depth of the EC networks were significantly enhanced in a 3D model with ECs and EPCs compared to an EC monoculture. In addition, conditioned medium (CM) from the 3D model with ECs and EPCs promoted network formation compared to CM from an EC monoculture. We also confirmed that EPCs secreted vascular endothelial growth factor (VEGF). However, networks cultured with the CM were shallow and did not penetrate the collagen gel in great depth. Therefore, we conclude that EPCs contribute to 3D network formation at least through indirect incorporation by generating a local VEGF gradient. These results suggest that the location of EPCs is important for controlling directional 3D network formation in the field of tissue engineering.  相似文献   

15.
To test the hypothesis that homocysteine induces constrictive vascular remodeling by inactivating peroxisome proliferator-activated receptor (PPAR), aortic endothelial cells (ECs) and smooth muscle cells (SMCs) were isolated. Collagen gels were prepared, and ECs or SMCs (10(5)) or SMCs + ECs (10(4)) were incorporated into the gels. To characterize PPAR, agonists of PPAR-alpha [ciprofibrate (CF)] and PPAR-gamma [15-deoxy-12,14-prostaglandin J(2) (PGJ(2))] were used. To determine the role of disintegrin metalloproteinase (DMP), cardiac inhibitor of metalloproteinase (CIMP) was used in collagen gels. Gel diameter at 0 h was 14.1 +/- 0.2 mm and was unchanged up to 24 h as measured by a digital micrometer. SMCs reduce gel diameter to 10.5 +/- 0.4 mm at 24 h. Addition of homocysteine to SMCs reduces further the gel diameter to 8.0 +/- 0.2 mm, suggesting that SMCs induce contraction and that the contraction is further enhanced by homocysteine. Addition of ECs and SMCs reduces gel diameter to 12.0 +/- 0.3 mm, suggesting that ECs play a role in collagen contraction. Only PGJ(2), not CF, inhibits SMC contraction. However, both PGJ(2) and CF inhibit contraction of ECs and SMCs + ECs. Addition of anti-DMP blocks SMC- as well as homocysteine-mediated contraction. However, CIMP inhibits only homocysteine-mediated contraction. The results suggest that homocysteine may enhance vascular constrictive remodeling by inactivating PPAR-alpha and -gamma in ECs and PPAR-gamma in SMCs.  相似文献   

16.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

17.
Infection with Helicobacter pylori (H. pylori) is considered a risk factor for gastric carcinoma. The purpose of this study was to clarify whether H. pylori infection plays a role in progression of gastric carcinoma. We examined the expression of genes encoding angiogenic factors and proteases by human gastric carcinoma cell lines (MKN-1 and TMK-1) co-cultured with or without H. pylori by cDNA microarray analysis. Co-culture with H. pylori increased expression of mRNAs encoding interleukin (IL)-8, vascular endothelial growth factor (VEGF), angiogenin, urokinase-type plasminogen activator (uPA), and metalloproteinase (MMP)-9 by gastric carcinoma cells. Up-regulation of these genes at the mRNA and protein levels was confirmed by Northern blot analysis, semi-quantitative RT-PCR analysis, and ELISA. In vitro angiogenic and collagenase activities of conditioned medium from the gastric carcinoma cells were also stimulated by co-culture with H. pylori. These results indicate that H. pylori infection may regulate angiogenesis and invasion of human gastric carcinoma.  相似文献   

18.
24 established melanoma cell cultures were screened for their secretion of plasminogen activators and plasminogen activator inhibitors into the culture medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by conventional and reverse fibrin autography. Among the cell lines investigated, 22 cell lines predominantly secreting tissue type plasminogen activator (t-PA) and four cell lines additionally secreting urokinase were found. The conditioned media of two cell lines (KRFM and MJZJ) were found to contain plasminogen activator inhibitor (PAI) activity at a Mr position of approximately 50,000. The PAI of one of the two melanoma cell (MJZJ)-conditioned media found to contain PAI activity was purified to apparent homogeneity employing concanavalin A-Sepharose chromatography, gel filtration on Sephadex G-150, chromatography on Affi-Gel blue, and affinity chromatography on a Sepharose 4B immobilized monoclonal anti-t-PA IgG column. The purified melanoma PAI was found to be a single chain protein, acid stable, immunologically related to the endothelial derived PAI. In contrast to endothelial PAI, melanoma PAI presented itself in the conditioned media of the melanoma cells and in the purified preparation to an appreciable extent in its active form.  相似文献   

19.
Gao G  Li Y  Zhang D  Gee S  Crosson C  Ma J 《FEBS letters》2001,489(2-3):270-276
Retinal levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), an angiogenic inhibitor, were measured and correlated with the ischemia-induced retinal neovascularization in rats. The retinas with neovascularization showed a 5-fold increase in VEGF while 2-fold decrease in PEDF, compared to the age-matched controls, resulting in an increased VEGF/PEDF ratio. The time course of the VEGF/PEDF ratio change correlated with the progression of retinal neovascularization. Changes in the VEGF and PEDF mRNAs preceded their protein level changes. These results suggest that an unbalance between angiogenic stimulators and inhibitors may contribute to retinal neovascularization.  相似文献   

20.
SVWI38-VA13-2RA cells have been shown to secrete both plasminogen activator(s) and inhibitory substance(s) which prevent detection of plasminogen activator activity in the widely used 125I-labeled fibrin dish assay. The SVWI38-VA13-2RA plasminogen activator(s) can be detected by assay of individual gel slices following SDS gel electrophoresis of SVWI38-VA13-2RA cell conditioned medium. The inhibitory substance(s) have been detected by the ability of SVWI38-VA13-2RA conditioned medium to inhibit the activity of mouse lung carcinoma (CMT64) cell plasminogen activator(s). Thus, lack of plasminogen activator activity with the 125I-labeled fibrin dish assay alone no longer suffices as proof that cells are not secreting plasminogen activator(s). Concomitant secretion of plasminogen activators and inhibitors must be assessed in attempts to correlate viral transformation, tumorigenicity and plasminogen activator levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号